Miniaturized Multi-Channel Thermocouple Sensor System

Feb. 23

Dr. Darold Wobschall

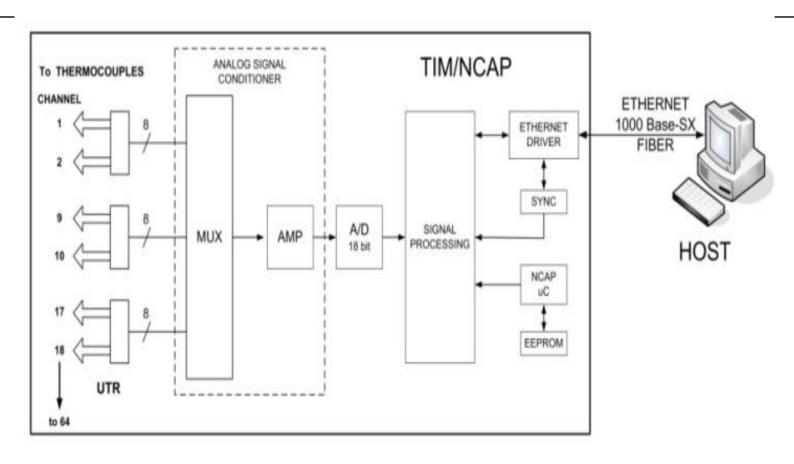
and

Avarachan Cherian

Esensors Inc.

IEEE SAS 2011

Agenda

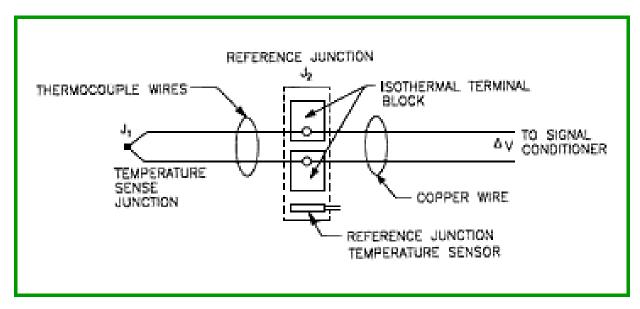

Goals

- Handles multiple thermocouples
- Reference junction compensation
- Fast and precise
- IEEE 1451 format

Contents

- Thermocouple reference method
- Amplifier and a/d
- Data Concentration
- IEEE format discussion

System Block Diagram

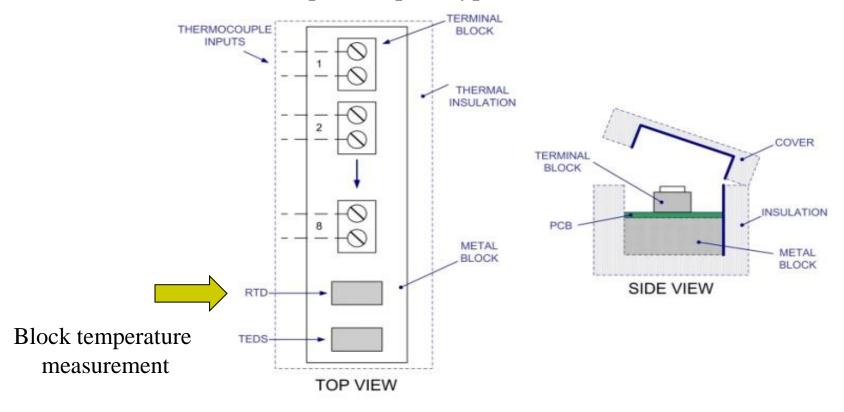

UTR: Uniform Temperature Reference

Features

- Grounded or ungrounded thermocouples
- □ 16 Channel (8 for prototype, later 64)
- □ Precision Uniform Temperature Junction (+/- 0.1 °C) using RTD
- Auto zero and thermocouple break test.
- Fixed gain input stage with anti-aliasing.
- □ Variable bandwidth (up to 2 kHz, 100 Hz initial)
- □ Low noise, fast response amplifiers
- □ Range of -100 mv to +100 mv (common TCs are -20 to +70 mv)
- Resolution of 1 μν
- Separate analog, digital and power ground, bypass and shielding
- Transducer Electronic Data Sheet (TEDS)
- Application: testing of engines

Thermocouple Reference Principle

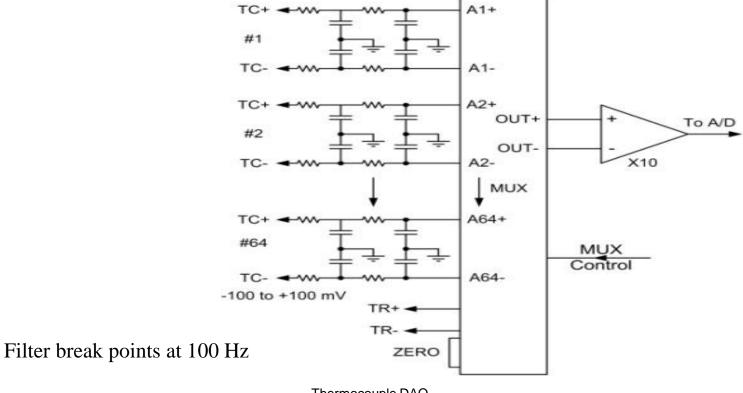
- Law of the Junctions $[\Delta v = \alpha(T_1 T_2)]$ where reference temperature T₂ is same for both junctions
- Reference junction temperature measured precisely by RTD



Principle of Reference Junctions

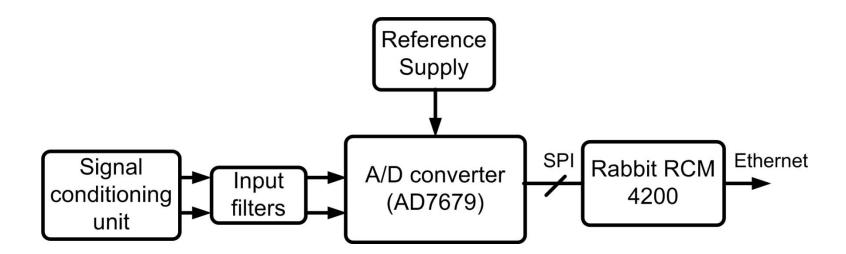
Thermocouple Reference

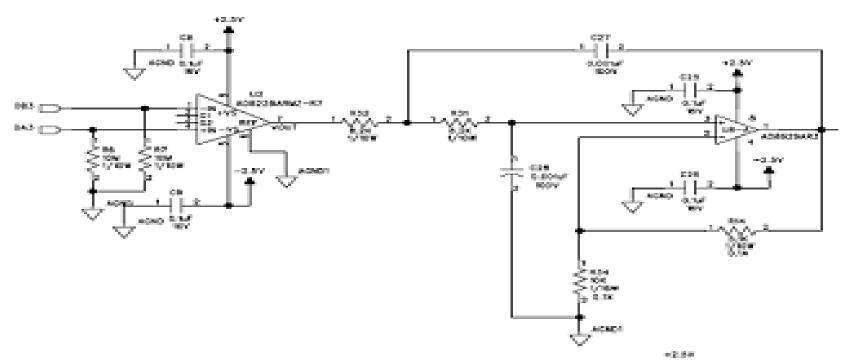
Uniform Temperature Reference


□ (8 thermocouples for prototype)

Input Section

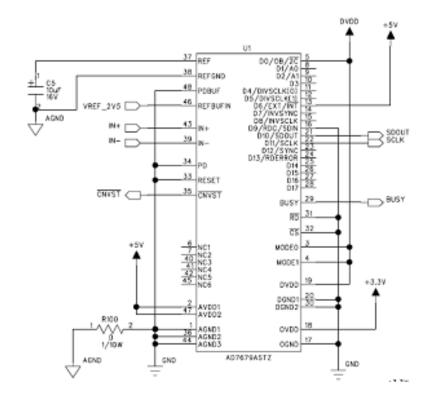
(with filters and multiplexer)


3 of 8 channels shown – differential inputs

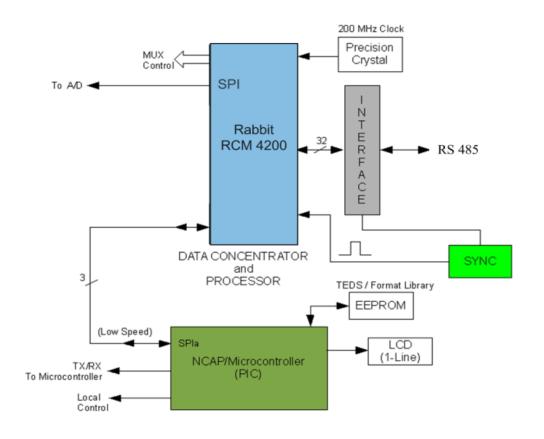

Thermocouple DAQ

Electronics Block Diagram

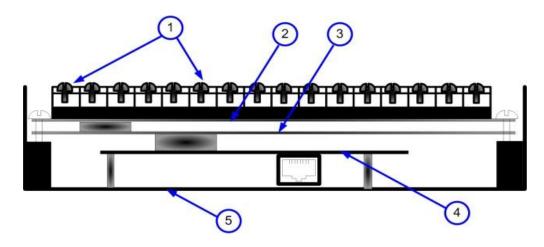
Production versions uses FPGA


Analog Input Section

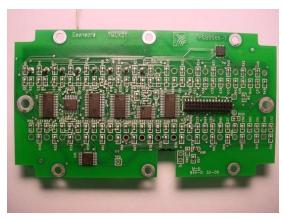
- Differential inputs to instrumentation amplifier
- Low pass filter for noise reduction and anti-aliasing


A/d Specifications

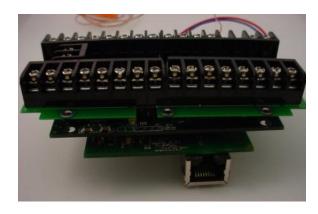
- 570 kSPS sampling frequency (up to 35kHz for 16 channels)
- □ 18-bit resolution
- Single a/d converter multiplexed for each thermocouple channel
- Mid-scale (2.00 v) zero using intermediate X2 amp (not shown)
- □ SPI (serial) output
- Serial outputs combined next stage
- Data displayed on PC for test


Data Concentrator (and NCAP)

- Controls a/d and mux
- Inserts time stamp
- □ Reformats (IEEE 1451)
- Data driver (RS485, USB or Ethernet)
- Production versions uses FPGA
- Sampling rate (16 channels) is 10 kHz
- □ Provides time stamp (IEEE 1588)


Circuit Layout - 1

- 1. Connectors to thermocouples.
- 2. PCB with channel multiplexer circuitry
- 3. PCB with signal conditioning circuitry
- 4. Controller board with communication ports
- 5. Enclosure housing PCBs and board electronics



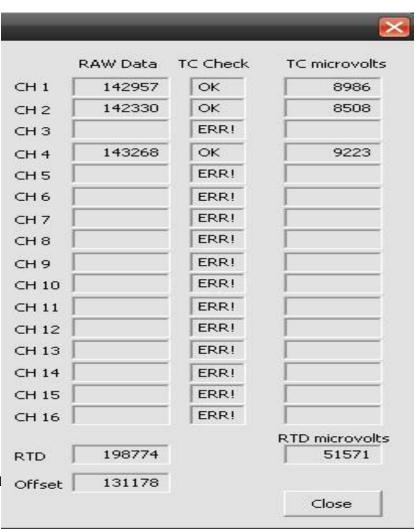
Circuit Layout - 2

Thermocouple DAQ

Multiplexer input

TC Terminal strip, side view

Signal Conditioner



Microcontroller

Data Readout

(test display)

- □ Raw data is a/d reading (18 bit)
- □ TC Check detects open inputs
- Output is TC voltage in μν
- □ RTD reading in µv
- Conversion to °C done on PC (could be done here if desired)
- 8 channels tested

Thermocouple I

Temperature Measurement Precision

- Law of the Junctions [Δv = α(T1 − T2)]
 where reference temperature T2 is same for both junctions and α depends on thermocouple metal composition
- Thermocouple α (slope) varies by factor of 10 in value and also accuracy varies due to alloy composition (see table)
- For type K, a 1 μν input precision corresponds to +/- 0.03 °C but absolute accuracy is less due to TC (and maybe ref junc) variations

Туре	Metals	Range (°C)	Tol. (°C)	α (μν/°C)
K	Chromel-alumel	0 to 1100	1.5	40
J	Iron-constantan	0 to 750	1.5 to 3	51
R	Platinum-Rhodium (13%)	-50 to 1700	1 to 3	5.4
С	Tungsten-rhenium	0 to 2320	4 to 22	14
Т	Copper-constantan	-250 to 400	1.5	39
Е	Chromel-constantan	-40 to 900	3	59

A review of the IEEE 1451 Smart Transducer Concept

IEEE 1451 Format

- Many advantages
 - Cover nearly all sensors and actuators
 - Many operating modes
 - Extensive units, linearization and calibration options
 - Multiple timing and data block size constraints
 - Compatible with nearly all wired and wireless sensor buses/networks
- Main parts
 - TEDS
 - Standard data transmission format (suitable for M2M)
- Configuration used
 - Combined TIM and NCAP (Ethernet as network)

Status of Various Parts of IEEE 1451

1451.0 – Basic data/TEDS format	Done (2007)
1451.1 – NCAP/Computer Interface	Done (1999)*
1451.2 – Serial	Revised (2011)
[1451.3 – Wired Multi-drop	Done (2002)*]
1451.4 – TEDS Only	Done (2005)
1451.5 – Wireless (WiFi, Zigbee, etc)	Done (2007)
1451.7 – RFID	Done (2010)
	* Needs revision

IEEE 1451.0 (Dot 0) TEDS Format

- □ Required TEDS [Memory block with defined format]
 - MetaTEDS
 - Channel TEDS
 - Calibration TEDS (unless SI units)
 - Xdr-name TEDS
 - Phy TEDS
 - Also optional TEDS
- □ Data Transmission [specific octet format]
 - TEDS/Status requests
 - Triggering and configuration
 - Sensor read commands and data return
 - Actuator write commands and data sending

IEEE 1451.0 Headers

Command message structure

- Destination TransducerChannel Number (most significant octet)
- Destination TransducerChannel Number (least significant octet)
- Command class
- Command function
- Length (most significant octet)
- Length (least significant octet)
- Command-dependent octets . . .

Reply message structure

- Success/Fail Flag
- Length (most significant octet)
- Length (least significant octet)
- Reply-dependent octets

Data Readout Example

□ IEEE 1451 Data output string

0xB8A33696, 0xB8A44BD3, 0xB8A370C9, 0xB8A4118E Channel 7 data Channel 8 data

- Data is 32 bit floating point SI units (volts, with °C as option)
 (as specified by TEDS)
- □ Time stamp format (TAI, IEEE 1588)
 - 0x01C98C880F4F4B0E in hexadecimal
 Wed, 11 February 2009 15:35 (date and time from first 32 bits)
 - # of nanoseconds (lower 32 bits, 0F4F4B0E): 256854798

Data Output on Network

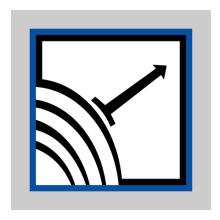
Network Options

- Ethernet (100 Mbits/sec Base T) as standard
- Fiberoptic (1 GHz) as alternate
- USB (2.0) as option
- RS485 for testing

Speed

- Data block (64 TC) is 2116 bits
- Includes timestamp and header
- At max bandwidth (2 kHz, 4 ksamples/sec), the data rate is 8.5 Mbits/sec
- Time sync and housekeeping data increases to about 9 Mbits/sec
- Time sync (1588) precision is 1 μs (100 μs would be ok)

Summary


- Thermocouple reference discussed
- Electronics sections described
 - Amplifier and a/d
 - Data Concentration
- IEEE format discussion

Supported by USAF Arnold AFB (SBIR)

Contact: Darold Wobschall – designer@eesensors.com

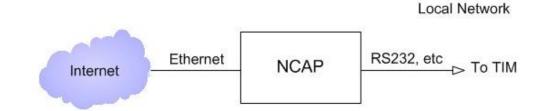
End

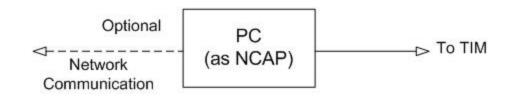
□ Backup Slides Follow

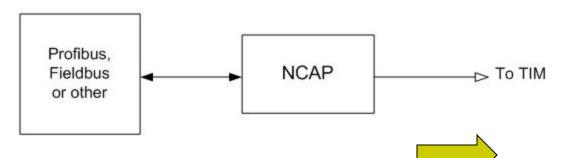
www.eesensors.com

IEEE 1451 Advantages

- □ Comprehensive enough to cover nearly all sensors and actuators in use today (not 20/80% approach)
- Many operating modes (buffered, no-buffer, grouped sensors, timestamps, timed data, streaming ...)
- □ Extensive units, linearization and calibration options
- Multiple timing and data block size constraints handled.
- □ Compatible with most wired and wireless sensor buses and networks (point-to-point, mesh, TIM-to-TIM, mixed networks).
- ☐ Efficient binary protocol (especially suitable for wireless)
- □ Standard is 400+ pages for basic part, over 1500 page total

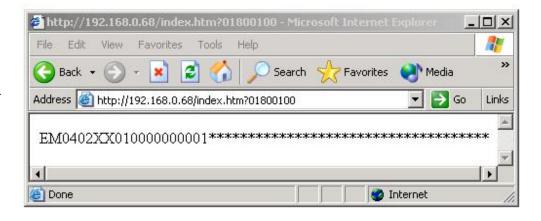

Network side (NCAP) options (wired)


26


□ Internet/Ethernet

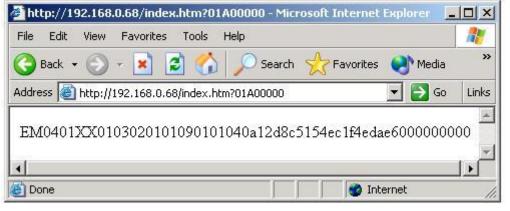
□ PC Readout

■ Industrial network



All use Dot 0 protocol

Data Readout Examples


(via Internet)

Sensor data converted to ASCII for display

TEDS data is displayed in hexadecimal form

Thermocouple DAQ

Blank