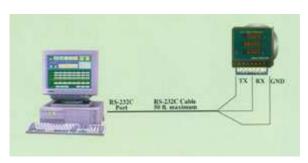


Click here for power meter specification or purchase


A Web-enabled Digital Power Meter

Phalguna Devalaraju Advisor: Dr. Darold Wobschall

Department of Electrical Engineering University at Buffalo, State University of NY Sponsor: Esensors, Inc., Amherst, NY

Conventional Power Meters

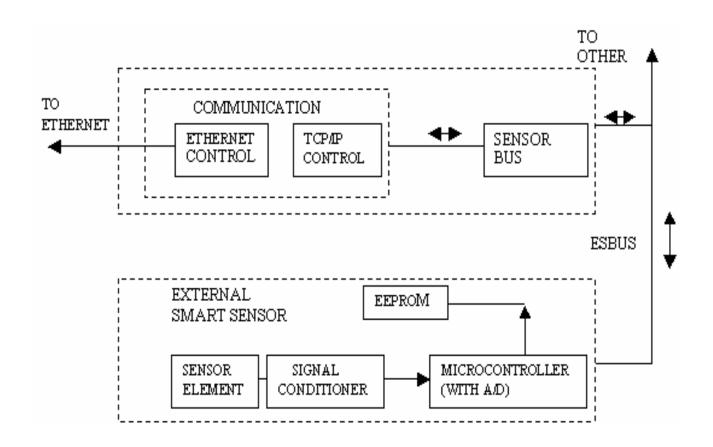
- Measured data not available remotely
- Most Internet capable DPMs require server computers
- + RS232 or RS485 connections required for data transfer
- Expensive to install in large numbers
- + Security issues for the data
- Networking with other sensors like HVAC/chemical is not possible with most

Objectives

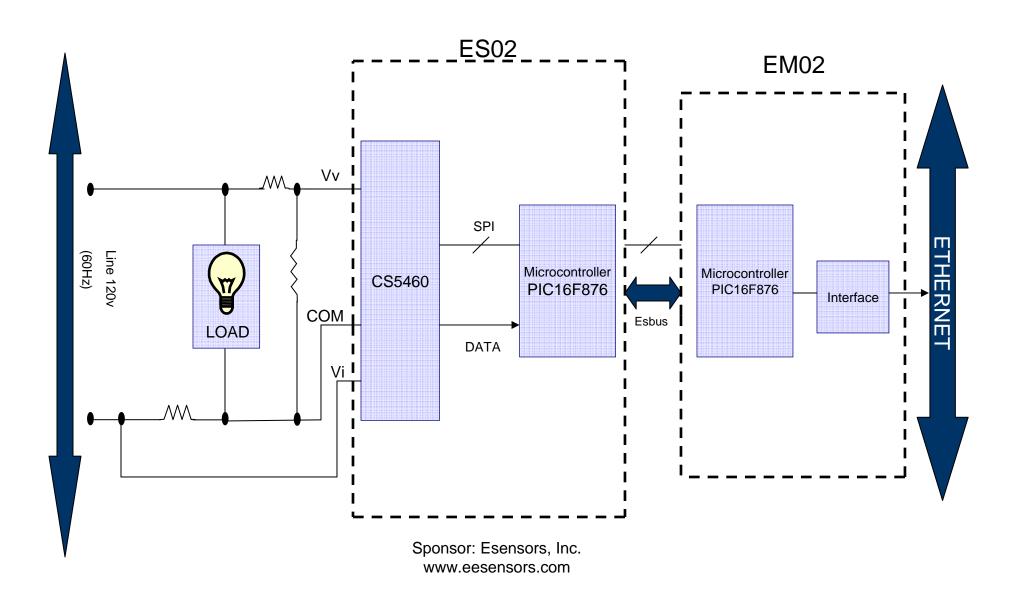
- → Develop a digital power meter with an IP address
- → Facilitate remote monitoring and control of electrical power
- ★ Arrive at an inexpensive solution for effective energy management
- → Eliminate the cost of a server computer acting as the interface between sensor nodes
- → Maximize the use of off-the-shelf hardware and software
- → A power meter that can be a part of a sensor network

DPM (Digital Power Meter) Features

- → Two modules: ES02 & EM02
- ★ ES02 measures single-phase electrical parameters: AC voltage (rms), AC current (rms), true power (watts)
- → Computes power factor and energy (KWH)
- → Nominal input range: 120V (rms) & up to 20A (rms)
- → 0.2% accuracy, suitable for metering
- → Connects to EM02 through an isolated SPI bus (Esbus)
- → Data transmitted over Ethernet using the EM02 module
- → Up to 9 power meters can be connected over an Esbus
- → Modular sections of the power meter facilitate interchangeability



DPM Features Continued

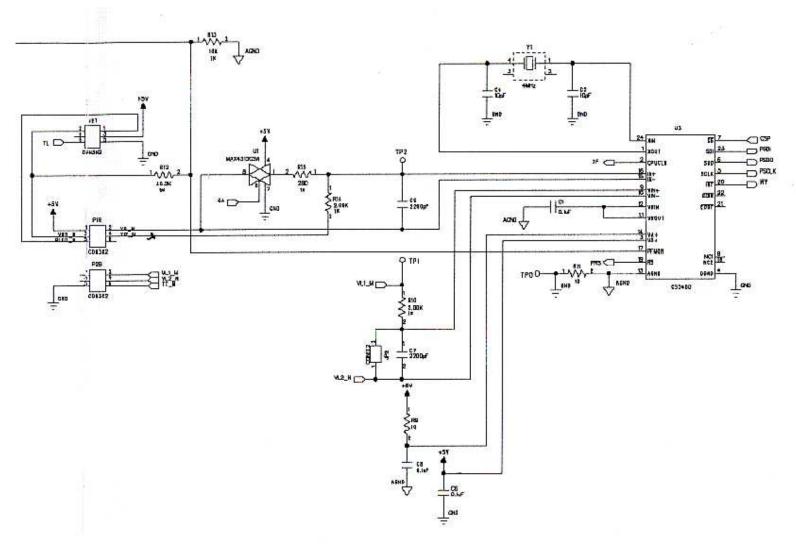

- → Optional on-site LCD display 2 lines, 16 characters
- → IP address configured through a PC using RS232 and ES00r module during installation
- → Measured data sent as e-mail or available through Esensors website
- → Instant alarm e-mails when the measurements exceed pre-defined limits
- → User customizable power meter web page

M

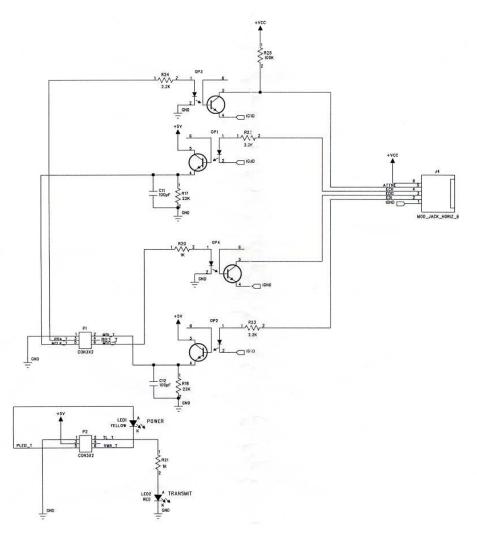
Smart sensor block diagram using Esbus

Block Diagram of the Power Meter



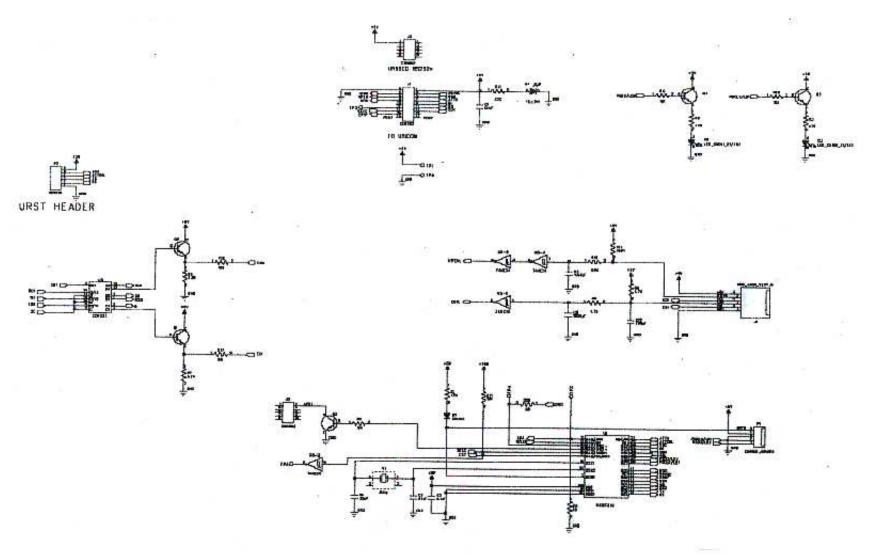

ES02 Details

- ★ Cirrus Logic's CS5460 Power/Energy IC used for A/D conversion
- ★ Current and voltage channel inputs are 250mV (RMS) full-scale
- → Current shunt and resistive divider are used for measuring current and voltage respectively
- → The microcontroller, PIC16F876, collects data from the power IC in 24-bit words, converts it into ASCII format and transmits over the Esbus
- → Can take upto 80A with an analog switch and upto 30A without the switch
- → Can operate at a maximum voltage of 180V without damage to the module

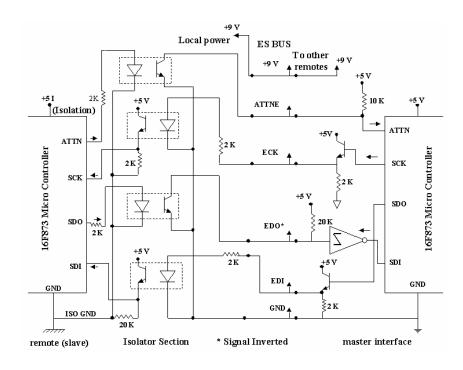

Schematic of ES02 – 1

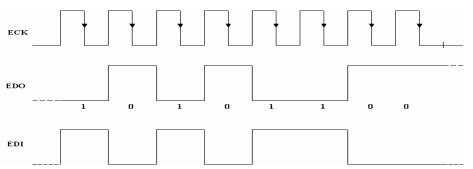
Schematic of ES02 – 2

Schematic of ES02 – 3



EM02 Details


- → This module is the interface between Ethernet and Esbus
- ★ Acts as the master module and provides the clock for Esbus communications
- → Network side of this module handles TCP/IP protocol
- → Network communications based on the Ubicom SX stack
- → Uses a modified version of the Ubicom evaluation board
- ★ EM02 receives/sends e-mails/HTTP data through a standard Ethernet interface (8-pin modular connector, 10Mbps)
- ★ A newer version of this module is being built that conforms to the IEEE 1451 NCAP hardware standards


M

EM02 Schematic

Esbus Overview

- + 6 wire full duplex modified SPI
- Each byte of data uses
 an 8 clock cycle
- → Data rate 10KHz
- ATTN line Generate Alerts
- Two handshaking signals used to control data transfer
- Optical Isolators Noise Reduction and Safety
- Multiple sensors can be connected to the EDO line

Command Format

Command from the user's browser

ecfybbbb

e – Header character

c – Channel/Sensor # (1-9)

f – Data format code

y – Command byte

bbbb – Command data if any

Ex: e1120000

Sent by the user through the Esensors website

www.eesensors.com\e1120000\

- → Each EM02 has its own IP address
- → Command in HTTP format received by EM02
- → EM02 transmits the command in Esbus format to ES02
- 'c' can specify different types of sensors
- 'y' and command data
 'bbbb' can calibrate the device

Data Format

Data from the power meter

Header: Eiiiicfw

E – Header character

iiii - Sensor ID

c – Channel/Sensor # (1-9)

f – Data format code

w – Status/Command byte

Ex: ES02a110

Data: ssddd.dd

Ex: Va120.00; Pf0.9995; Pa1500.0

Sent by the power meter through Ethernet in HTTP format

- → 32 bytes sent back in Esbus format
- → 8 byte header and 24 bytes data
- → Sensor ID specifies type of sensor
- → 'w' used to alert the user
- → Data is converted to HTTP format by embedded Ethernet module in EM02

Va (V _{rms})		Ia (A _{rms})		Power Factor		True Power (watts)	
Enetics*	ES02	Enetics	ES02	Enetics	ES02	Enetics	ES02
20	20	1	1	0.95	.9472	19	0019.0
120	120	1	1	0.97	.9683	116.4	0116.2
120	120	5	4.99	0.99	.9908	594	0593.3
120	120	20	20	0.99	.9897	2376	2375.3

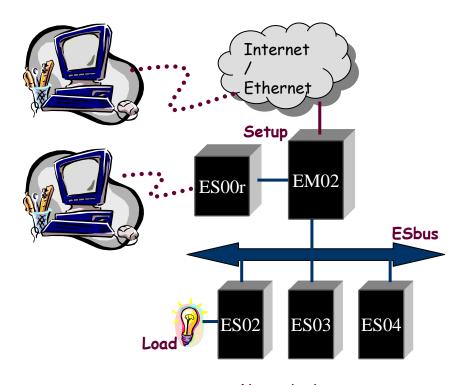
^{*} *Enetics* LMS-5750 PowerScape

Module	Dimensions (in)	Weight (oz)
ES02	3.125x2.125x1.5	6.0
EM02	3.6x2.6x1.1	4.5

Temperature Range: -45C to +125C Operating Humidity: 0 to 100% (non – condensing)

Current Work

- ★ The single phase power meter is in the final stages of testing
- → Networking the power meter with other sensors like HVAC
- → Design of a wireless communication link for the single phase power meter data transfer
- → Design and development of a three-phase, web-enabled digital power meter specifically for industrial use
- → Inclusion of low data rate wireless networking capability


Summary

Networked sensors

EM02 Sponsor: Esensors, Inc.

www.eesensors.com

Phalguna Devalaraju pd6@buffalo.edu

School of Engineering and Applied Science

The Electrical Engineering Department

- M
 - No CTs, PTs or other auxiliary devices required.
 - Easy installation
 - Humidity, temp, surge, housing material, overland capacity
 - Option of on-the-spot LCD display.
 - Many power measuring devices use RS232 or 485 to connect to a computer.
 - Calibration from computer, dim of the cases.
 - Maximum data logging capacity of the website, min current and voltage msmnt, any website graphs, sleep mode power cnsmp, normal mode cnsmp, weight, possible sets of msamnts,
 - Esbus small block diagram, wiring and data transfer details.
 - Mention about UBicom embedded internet board.
 - Explain off the shelf software, cost of electricity, any changes or control that can be effected from the website or by the remote user.
 - Diagrams of fluke etc multimeters handheld, rs232 meters with computer, ION or similar internet enabled power meters with block diagrams..
 - Fully Customizable Web Page Development
 - Multiple Meter Hosting On One Page
 - Read Direct From Meters (No Server Software Needed)
 - No Active X Controls Or Java Downloads
 - IT Dept. Friendly (Works Through Firewalls)
 - Instant Alarm Emails Direct From The Meter
 - Talk about other sensors available with same concept(internet).. Say that research is going on.. In this field..
 - On-site data logging not included
 needs real time clock which increases time and cost