Smart Sensor Integration with a Wired Network

Darold Wobschall

Esensors, Inc. *Buffalo, NY*

Objectives

- Describe wired serial Transducer Interface Modules (TIMs) with IEEE 1451 protocol
- Show the data reading process and Transducer Electronic Data Sheet (TEDS) for several serial devices
- More

Status of Serial IEEE 1451.x Networks

- <u>IEEE 1451.2 TTI/RS232/RS485</u> (approved 1997)
 TTI approved 1997 -- Revision working group in process
- IEEE 1451.3 Multi-drop & timestamp (approved 2003) but no transceiver hardware yet
- IEEE 1451.4 Analog & TEDS (approved 2004)

 TEDS only, must be combined with other Dot x for digital data
- IEEE 1451.6 Open CAN (early approval process)
 Far from ready

All now use recently approved IEEE 1451.0 Protocols & formats

Original IEEE 1451.2 (Dot 2)

With 10-pin Transducer Independent Interface (TII)

Note: New name is TIM (Transducer Interface Module)

Original IEEE 1451.2 TII (SPI) Interface

>	k	

*

*

* SPI line

Line	Logic	Driven By	Function
2 DIN	Positive logic	NCAP	Address and data from NCAP to STIM
3 DOUT	Positive logic	STIM	Data transport from STIM to NCAP
1 CLK	Positive logic	NCAP	Positive-going edge latches data on DIN and DOUT
6 NIOE	Active low	NCAP	Signals that data transport is active
8 NTRIG	Negative logic	NCAP	Performs triggering function
4 NACK	Negative logic	STIM	Trigger acknowledge and data transport acknowledge
7 NINT	Negative logic	STIM	Used by the STIM to request service from the NCAP
10 NSDET	Active low	STIM	Used by the NCAP to detect the presence of a STIM
9 POWER	N/A	NCAP	Nominal 5-V power supply
5 COM	N/A	NCAP	Signal common or ground

RS232 version of IEEE 1451.2 (proposed)

- Point-to-point serial format
- Standard 9-pin connector and +/- 10 volt level
- RS485 multi-drop is likely extension
- USB under consideration
- Advantage is compatibility with most small microcontrollers used with sensor electronics (UART or TX/RX interface)

Example of a Dot 2 (RS232) TIM

Network side (NCAP) options (wired)

Internet/Ethernet

• PC Readout

Industrial network

Basic Requirements for IEEE 1451Capable TIMs

◆ TIM must recognize and respond to standard (Dot 0) commands (some required and some optional).

[Our simple demo responds to 5? Commands]

- Data must be returned in proper format, specifically the header (6 bytes?) and variables [we use IEEE floating point (32 bits)].
- The required Transducer Electronic Data Sheet (TEDS) must be present and in the proper format.

[Our demo has the three required TEDS and one optional TEDS, a total of 100? Bytes]

- Physical layer (Dot x) must be compatible with existing external standard
- More

Block Diagram of a Prototype Dot 2 TIM or Smart Transducer

Prototype Dot 2 (RS232)TIM

(with 2 sensors and 1 actuator)

Photo

Data Readout Example

Sensor data converted to ASCII for display

Prototype TIM and NCAP

NCAP interfaces to Internet via Ethernet

TEDS Readout Example

• Data in is hexadecimal form

IEEE 1451.4 (Dot4) Mixed Mode Interface (MMI)

Dot4 System Block Diagram

More

Dot4 TEDS

- Dot4 TEDS differs from standard IEEE 1451.0 TEDS.
 It has three parts:
- UUID (Universal Unique Identifier) identifies sensor. Every sensor (and manufacturer) has unique number 6-byte binary code (supplied by the EEPROM manufacturer and controlled by the IEEE).
- Basic TEDS section
 Manufacturer ID (14 bits), Model No. (15 bits), Version Letter (5 bits),
 Version Number (6 bits), Serial Number (24 bits)
- IEEE Standard Template or Manufacturers TEDS section
- ◆ Translation from Dot4 to Dot0 TEDS possible (likewise sensor data is sent in Dot 0 format)

Wireless Connection

- Wireless modules with RS232 I/O when connected to Dot 2 TIMS are similar to IEEE 1451.5 (wireless version of IEEE 1451).
- Data format and TEDS are the same (both follow the Dot 0 standard).
- Demo at IEEE 1451 booth.

References

- R. Johnson, et al "A Standard Smart Transducer Interface" http://ieee1451.nist.gov/Workshop_04Oct01/1451_overview.pdf
- ◆ IEEE Std. 1451.2-1907 "IEEE Standard for a Smart Transducer Interface for Sensors and Actuators Transducer to Microprocessor Communication Protocols and Transducer Electronic Data Sheet (TEDS) Format" http://ihome.ust.hk/~yangrd/pdf/ieee14512.pdf
- R. Frank "Understanding Smart Sensors", 2nd edition, Artech House (2000)
- D. Wobschall, "Websensor Design Smart sensors with an Internet Address" Proceeding Sensors Expo (Philadelphia, Oct. 2001)
- D. Wobschall, "A Minimal Dot4 NCAP with a Compatible Sensor Bus", SiCon/05 (Houston).
- www.eesensors.com/IEEE1451

Summary

- An IEEE 1451.2
- More

Further information:designer@eesensors.com