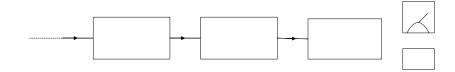
Smart Sensor Design and Networking Standards

Dr. Darold Wobschall

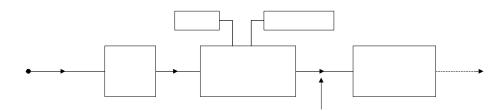
Associate Professor Emeritus (EE)

and President, Esensors Inc.

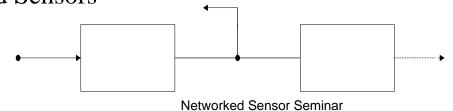
Goals

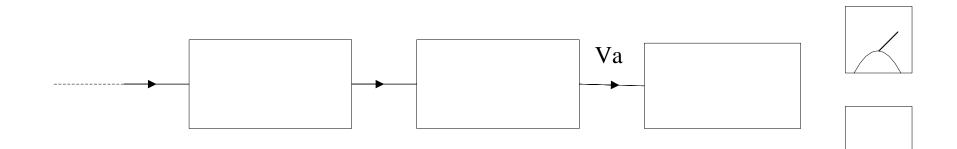

- □ Review electronic sensors and signal conditioners
- Describe smart sensor design
- Discuss sensor networks, both wired and wireless
- □ Promote the IEEE 1451 sensor network standard
- □ Comment on wireless sensor future

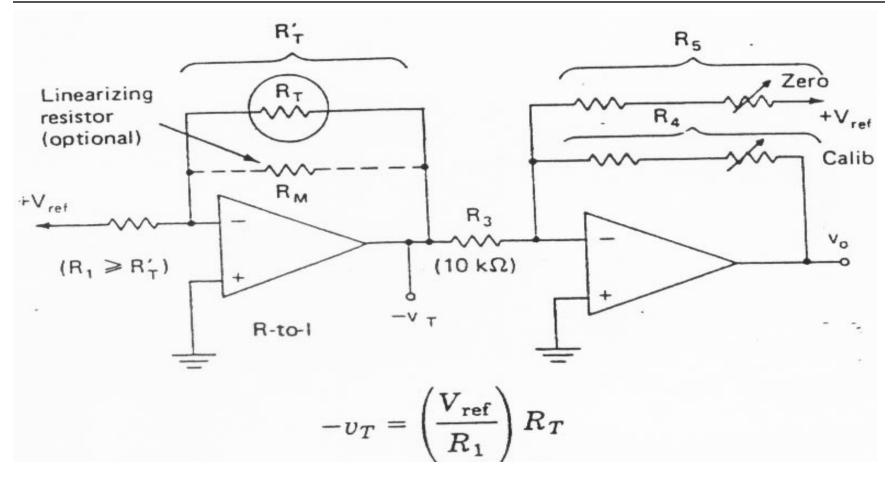
Sensor Development past and future


- Most sensor principles known (by physicists) for over 100 years
- □ Many sensors used industrially for over 60 years
- □ Computer controls and appetite for data have driven sensor uses, especially Machine-to-Machine (M2M).
- Continuing improvements in manufacturing methods
 (e.g. MEMS) have made sensors smaller & easier to use
- Advances in electronics (analog, a/d, microcomputers, communications) lower costs and add functionality.
- □ Smart, digital, networked sensors are the future trend

Sensor Classes


Basic Sensors


□ Smart Sensors


Networked Sensors

Basic Sensor Block Diagram

Signal Conditioner Example (Thermistor)

Partial List of

Measured Parameters and Sensor Technologies

- □ <u>Acceleration/Vibration</u>
- □ <u>Level & Leak</u>
- □ <u>Acoustic/Ultrasound</u>
- □ <u>MachineVision</u>
- □ <u>Chemical/Gas</u>
- □ <u>Motion/Velocity/Displacement</u>
- □ <u>Electric/Magnetic</u>
- □ <u>Position/Presence/Proximity</u>
- $\Box \quad \underline{Flow}$
- □ <u>Pressure</u>
- □ Force/Strain/Load/Torque
- □ <u>Temperature</u>
- □ <u>Humidity/Moisture</u>

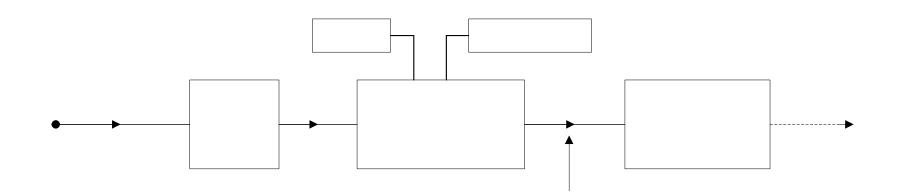
- □ Resistance
- □ Capacitance
- □ Inductance & magnetics
- □ Optical & fiber optic
- □ Voltage & piezoelectric
- □ Ultrasonic
- □ RF/microwave

Sensors (and sensor industry) are subdivided (fragmented) by:

- 1. Parameter measured
- 2. Technology
- 3. Application area

Some Sensor Elements

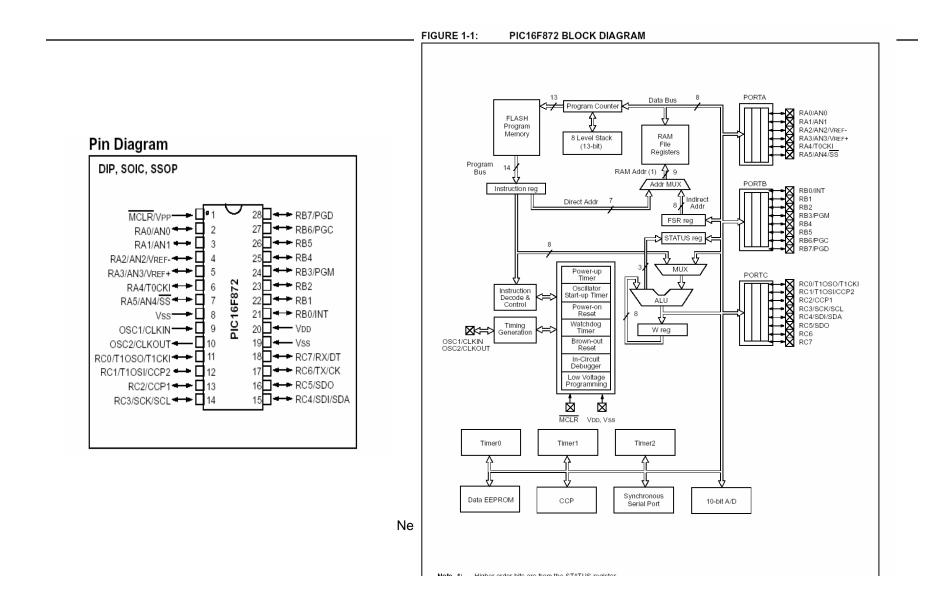
PC Signal Acquisition Plug-in Method (older, analog approach)


- □ A Star configuration: each sensor connected directly to DAQ.
- □ Results in many wires if multiple sensors
- □ Calibration done in software for each sensor
- □ Noise often causes errors

Isolated M Series Multifunction DAQ 16-Bit, 250 kS/s, ±10 V or ±20 mA Analog Inputs

AI 0- AI 1+ AI 2+ AI 3- AI GND AI 4- AI 5+ AI 6+ AI 7+ NC AO 0 AO GND PEI 1/P0.1 (Input) PEI 2/P0.2 (Input) PEI 4/P0.4 (Input) PEI 4/P0.4 (Input)	20 1 21 3 22 4 23 5 24 6 25 7 28 10 29 11 30 12 31 13 32 14 34 16 35 17	AI 0+/CAL+ AI 1- AI GND AI 2- AI 3+ AI 4+ AI 5- CAL- AI 6- AI 7- NC AO 1 PEI 0/P0.0 (Input) P0.GND PEI 3/P0.3 (Input) PEI 5/P0.5 (Input) PEI 6/P1.0 (Output)
PEI 4/P0.4 (Input) P1.VCC PEI 7/P1.1 (Output) PEI 9/P1.3 (Output)	33 34 35 16	PFI 3/P0.3 (Input) PFI 5/P0.5 (Input) PFI 6/P1.0 (Output PFI 8/P1.2 (Output P1.GND

Smart Sensor Block Diagram


Smart (Digital) Sensor Features

- Analog/Digital Converter
 Typically 10-14 bits, usually internal
- □ Microcontroller (embedded)
 - PIC or similar 8-bit micro with appropriate features
- □ Sensor Identification (serial # etc)
- **Calibration information**

Compensates for sensor variations; conversion to engineering units

□ Data logging and real-time clock (optional)

Microcontroller Example

Connection of Non-networked Smart Sensors to Computers

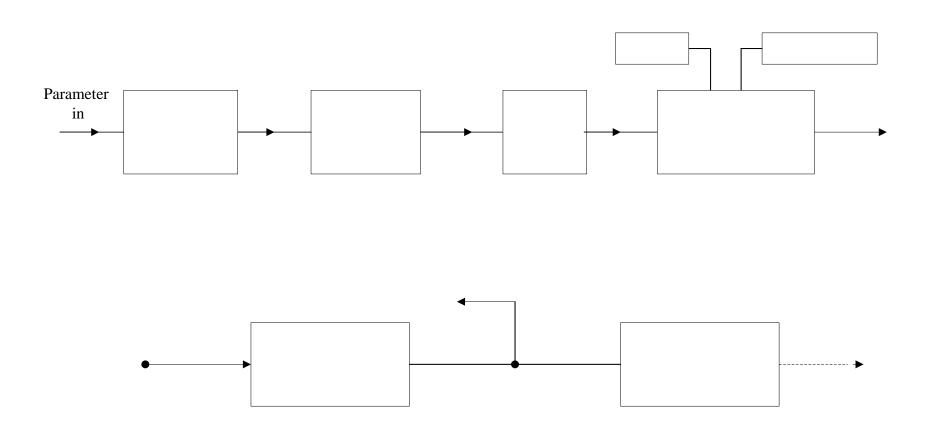
- USB (best for PCs) or RS232 (best for Instruments) Serial Data Lines
- □ One line and port per sensor (a problem with large systems)
- Data protocol not standardized

Websensor – sensor with Internet Address

- □ Uses Ethernet as the Network
- □ Microcontroller has TCP/IP (mini-website) as protocol
- □ Data can be read anywhere on Internet
- Polling/logging/display by NAGIOS (Lynix) freeware
- □ A smart sensor but does not have standard interface

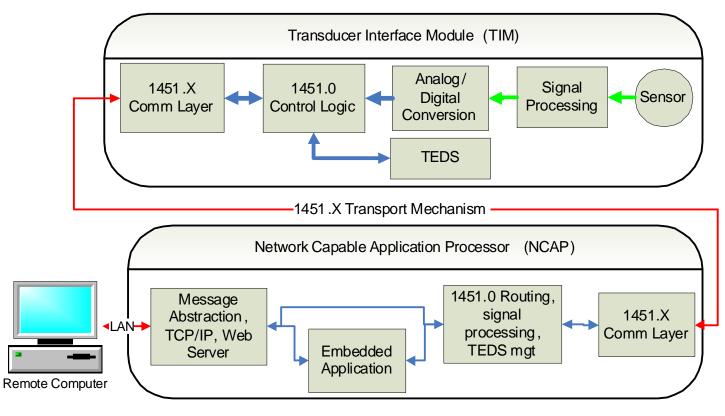
Websensor data readout (typical of digital sensor displays)

Edit View Favorites T	ools Help					
) Back 🔹 🕥 🕤 🛃 🔮	🕯 🏠 🔎 s	Search 🨾 Favori	tes 🛛 💽 Med	ia		
ress 🕘 http://192.168.254.1/i	nagios/index.html					So Li
~	websensor1	Humidity	OK	08-30-2004 11:16:04 Od Oh 16m 37s	1/3	OK: temp: 87.7 F, humidity: 44.5%, illumination: 275.3
Nagios		Illumination	CRITICAL	08-30-2004 11:14:28 0d 0h 18m 18s	3/3	CRITICAL: temp: 87.7 F, humidity: 43.7%, illumination: 275.3
		TEMPERATURE	OK	08-30-2004 11:16:15 Od Oh 16m 28s	1/3	OK: temp: 87.7 F, humidity: 45.1%, illumination: 275.3
eneral	websensor2	Humidity	OK	08-30-2004 11:16:04 Od Oh 16m 37s	1/3	OK: temp: 79.0 F, humidity: 57.7%, illumination: 240.4
lome locumentation		Illumination	CRITICAL	08-30-2004 11:16:04 Od Oh 16m 38s	3/3	CRITICAL: temp: 79.0 F, humidity: 57.4%, illumination: 240.4
onitoring		TEMPERATURE	OK	08-30-2004 11:16:15 Od Oh 16m 28s	1/3	OK: temp: 79.0 F, humidity: 58.3%, illumination: 240.4
actical Overview	websensor3	Humidity	OK	08-30-2004 11:16:04 Od Oh 16m 37s	1/3	OK: temp: 76.2 F, humidity: 60.8%, illumination: 78.3
Service Detail		Illumination	CRITICAL	08-30-2004 11:17:16 0d 0h 15m 28s	3/3	CRITICAL: temp: 76.2 F, humidity: 63.7%, illumination: 78.3
Status Overview		TEMPERATURE	OK	08-30-2004 11:16:15 Od Oh 16m 28s	1/3	OK: temp: 76.2 F, humidity: 62.2%, illumination: 78.3
Status Summary	websensor4	Humidity	OK	08-30-2004 11:17:28 Od Oh 19m 57s	1/3	OK: temp: 81.7 F, humidity: 52.8%, illumination: 71.8
Status Grid Status Map		Illumination	CRITICAL	08-30-2004 11:16:04 Od Oh 16m 37s	3/3	CRITICAL: temp: 81.6 F, humidity: 50.8%, illumination: 71.8
-D Status Map		TEMPERATURE	OK	08-30-2004 11:16:15 Od Oh 16m 28s	1/3	OK: temp: 81.6 F, humidity: 51.6%, illumination: 72.9
otifications				32 Matching Service Entries I	Displayed	


Sensor/Transducer Networks

- A network connects more than one addressed sensor (or actuator) to a digital wired or wireless network
- Both network and sensor digital data protocols are needed
- Standard data networks can be used but are far from optimum
- Numerous (>100) incompatible sensor networks are currently in use – each speaking a different language

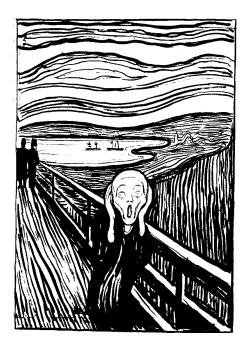
The Tower of Babel


Networked Sensor Block Diagram

IEEE 1451 – the Universal Transducer Language

- □ Too many network protocols in common use
- Narrow solutions and borrowed protocols have not worked
- Sensor engineers in the fragmented sensor industry need a simple method of implementation
- $\Box \quad How can it be done?$
- □ We need something like USB, except for sensors
- □ The IEEE 1451 Smart Transducer Protocol standard is the best universal solution
- Supported by NIST, IEEE and many Federal agencies

A review of the IEEE 1451 Smart Transducer Concept



IEEE 1451 Advantages

- □ Comprehensive enough to cover nearly all sensors and actuators in use today (not 20/80% approach)
- Many operating modes
 (buffered, no-buffer, grouped sensors, timestamps, timed data, streaming ...)
- □ Extensive units, linearization and calibration options
- □ Multiple timing and data block size constraints handled.
- □ Compatible with most wired and wireless sensor buses and networks (point-to-point, mesh, TIM-to-TIM, mixed networks).
- □ Efficient binary protocol (especially suitable for wireless)
- □ Standard is 400+ pages for basic part, over 1500 page total

But the Complexity!

- A comprehensive standard is necessarily complex
- There was little adoption of the original IEEE 1451.2 (TII) standard because of its perceived complexity
- Manual preparation of the TEDS is not practical
- □ A TEDS compiler is needed
- A compliance test procedure is also desirable to prove that the design is correct

Munch – The scream

IEEE 1451.0 (Dot 0) TEDS Format

- □ Required TEDS [Memory block with defined format]
 - MetaTEDS
 - Channel TEDS
 - Calibration TEDS (unless SI units)
 - Xdr-name TEDS
 - Phy TEDS
 - Also optional TEDS
- □ Data Transmission [specific octet format]
 - TEDS/Status requests
 - Triggering and configuration
 - Sensor read commands and data return
 - Actuator write commands and data sending

TEDS Format

□ General format for each TEDS section:

Field	Description	Data Type	Number of Bytes
	TEDS Length	UInt32	4 bytes
1 to N	Data Block	Variable	Variable
	Checksum	Uint16	2 bytes

□ Binary TEDS Tuple format for each data block:

Type-Length-value (TLV)

Example: 01 02 A3 04

Field type is 1, Length is 2 bytes, field value is "A304" hex

□ Field example: Meta-TEDS (TEDS # 1)

13: Number of Implemented Transducer Channels (default=1)

TEDS Compiler

чф---

CHAN

67

Part of Ph. D. thesis of
 Wai Liu
 (Univ. at Buffalo)

	The University at Buffale The Just Commity of New York	0
	Accese Cede 3 CHANNEL 1	EDS
	Change Default Value as Desired	
	Channel	1
	Sensor Type	Temperature Sens
	Units	Celsius +
	Zero/Mininum Value	0.0
the at the first 1 to 1 and 1 and 1 and 1	Full Scale Value	100.0
IEEE 1451 TE	OError/Uncertainty	0.1
	Chose Data Format	
METATEDS	🗉 Integer 🔅 Flasting Point	C Other
ETA ID TEDS	Features:	
ELICALIBRATION TEDS	Self-Test/Multi-Range	NO -
WINNEL ID TEOS	Sampling/Buffer	NO -
IBRATION ID TEDS	Not Default Timing	NO ·
-	- NEXT	40
COPY	COPYRIGHT @2005 WeiLik, Univer	ite at Reall de All side annuel
COP1	· · · · · · · · · · · · · · · · · · ·	

TEDS Sections Implemented

- Meta TEDS
- Meta ID TEDS
- Transducer Channel TEDS
- Transducer Channel ID TEDS
- Calibration TEDS
- Calibration ID TEDS
- XdrcName TEDS

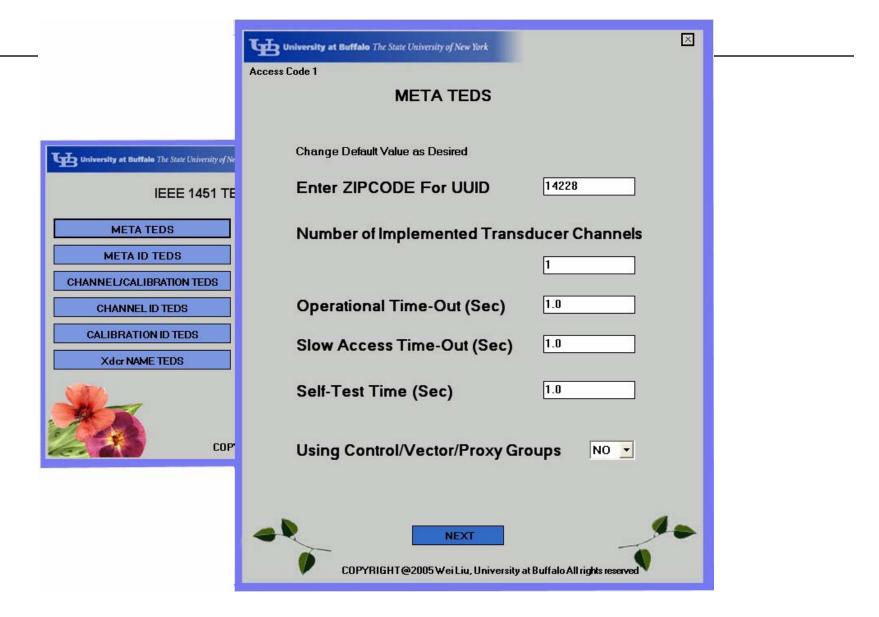
Referenced by TEDS section/access code (e.g. #1 for Meta-TEDS)

Standard Transducer Units (binary format)

SI Based Units

Base Quantity	Name	Unit Symbol
Length	meter	m
Mass	kilogram	kg
Time	second	S
Electric current	ampere	A
Thermodynamic temperature	Kelvin	K
Amount of substance	mole	mol
Luminous intensity	candela	cđ

Field	Description	Data Type	Number of octets
1	Physical units interpretation	UInt8	1
2	(2 * <exponent of="" radians="">) + 128</exponent>	UInt8	1
3	(2 * <exponent of="" steradians="">) + 128</exponent>	UInt8	1
4	(2 * <exponent meters="" of="">) + 128</exponent>	UInt8	1
5	(2 * <exponent kilograms="" of="">) + 128</exponent>	UInt8	1
6	(2 * <exponent of="" seconds="">) + 128</exponent>	UInt8	1
7	(2 * <exponent amperes="" of="">) + 128</exponent>	UInt8	1
8	(2 * <exponent kelvins="" of="">) + 128</exponent>	UInt8	1
9	(2 * <exponent moles="" of="">) + 128</exponent>	UInt8	1
10	(2 * <exponent candelas="" of="">) + 128</exponent>	UInt8	1


Dot 0 Command/Response Structure

Byte Number	Description
1	Destination Transducer Channel Number (Most significant byte)
2	Destination Transducer Channel Number (Least significant byte)
3	Command Class
- 4	Command Function
5	Length (Most significant byte)
6	Length (Least significant byte)
7-N	Command dependent bytes
	NCAP Command Message Structure

Byte Number	Description
1	Success/Fail Flag
2	Length (Most significant byte)
3	Length (Least significant byte)
- 4-N	Reply dependent bytes

TIM Reply Message Structure

Meta-TEDS Writer Screen



Channel/Calibration TEDS (for linear sensors)

G

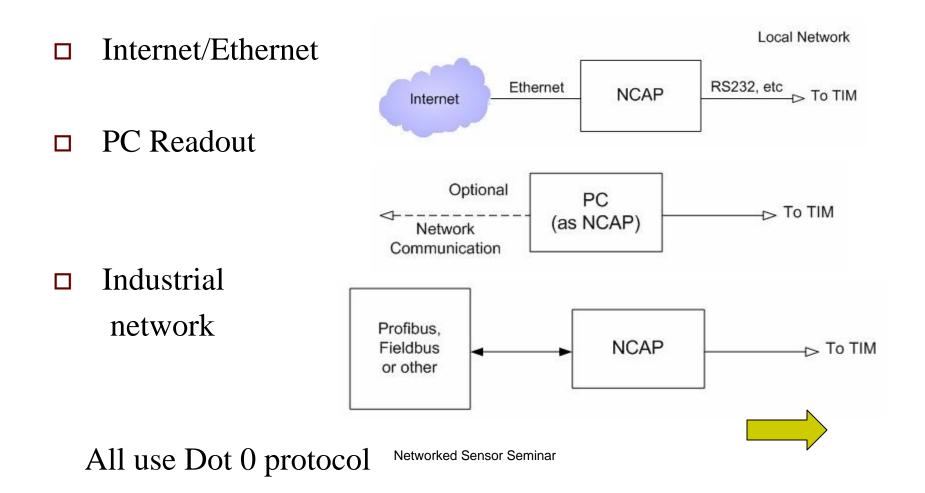
	University at Buffalo The State University of New York		
	Access Code 3 CHANNEL TEDS		
	Change Default Value as Desired		
B University at Buffalo The State University of Net	Channel	1	
IEEE 1451 TE	Sensor Type	Temperature Sens₁▼	
	Units	Celsius 💌	
META TEDS	Zero/Mininum Value	0.0	
CHANNEL/CALIBRATION TEDS	Full Scale Value	100.0	
CHANNEL ID TEDS	OError/Uncertainty	0.1	
CALIBRATION ID TEDS	Chose Data Format		
Xder NAME TEDS	C Integer 📀 Floating Point	O Other	
	Features:		
COP1	Self-Test/Multi-Range	NO 💌	
COR	Sampling/Buffer	NO 🔽	
	Not Default Timing	NO 💌	
		4.	
	NEXT		

TEDS Reader

IEEE 451 TIM Compliance Tester

TIM (Transducer Interface Module) is most complex and done by sensor design engineers

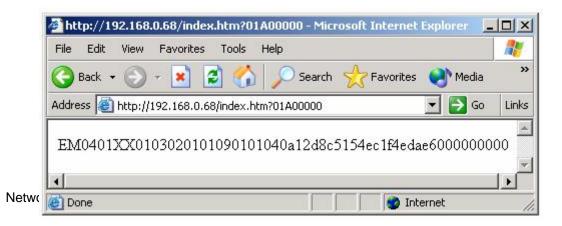
(TIM tester can be used by the few NCAP designers)


- Tester verifies compliance of a TIM to IEEE 1451.0
 (Dot 0) protocol
- □ Focus is on TEDS checking and data transfer format
- Physical device compliance not checked (part of other standards, e.g. RS485, Bluetooth)
- □ Tester uses serial bus (RS232)
- **Testing may be done by Internet**

Standard TIM/NCAP Configurations

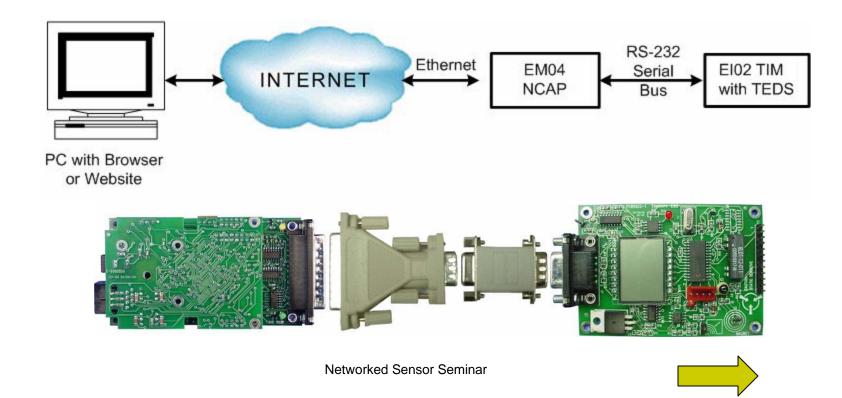
The following 3 slides describe TIM and NCAP configurations for which the TIM tester can be used

Network side (NCAP) options (wired)



Data Readout Examples (via Internet)

Sensor data converted to ASCII for display

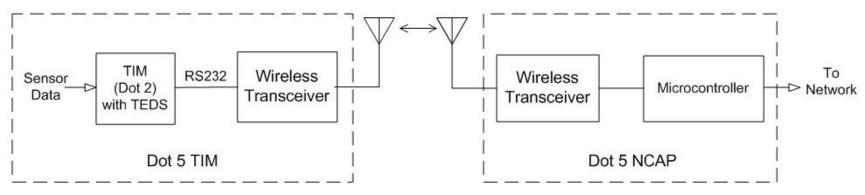

🛎 http://192.168.0.68/index.htm?01800100 - Microsoft Internet Explorer 👘 📃	
File Edit View Favorites Tools Help	1
🎯 Back 👻 💮 🕣 👔 🏠 🔎 Search https://www.search 🧐 Favorites 💽 Media	»
Address 🗃 http://192.168.0.68/index.htm?01800100	Links
EM0402XX01000000001*************************	**
🗉 Done 🛛 👘 🚱 Internet	

TEDS data is displayed in hexadecimal form

Prototype TIM and NCAP

□ NCAP interfaces to Internet via Ethernet

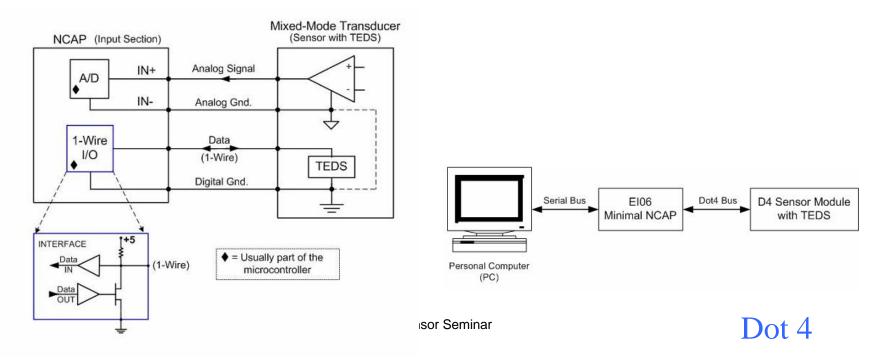
TIM Tester – Data retrieval


University at Buffale The State University of New York	
IEEE 1451 TIM Tester V.1.0	
Query Channel TEDS Analysis: Result: Supported	
Sensor Type: Temperature Sensor	
SI Unit: K	
Low Limit Value: 233	
High Limit Value: 353	
Query Calibration TEDS Analysis: Result: Supported	
Slope Constant Value: 1	
Intercept Constant Value: 273.15	
Sensor Data Value: 26.36719	
Calibrated Sensor Value (In SI Unit): 299.5172	
	× 1
Operating Mode 🗾 COM 1 💌	
Start Test	
COPYRIGHT@2006 Darold Wobschall, University at Buffal All rights reserved	

Serial Bus Format and Relation to other Networks

- □ Tester uses RS232 serial bus only but...
- □ Interfaces to other physical devices (USB, RS485, Bluetooth, Zigbee,) available.
- **TEDS** retrieval is one feature
- Sensor data read (protocol check) for each channel: *Idle mode* – full scale value of sensor reading (Checked against TEDS, error flag is not correct) *Operating mode* – actual sensor reading (Must be within sensor range)

Example – Wireless Connection


- □ <u>Wireless modules with RS232 I/O</u> when connected to Dot 2 TIMS are similar to IEEE 1451.5 TIMs (wireless version of IEEE 1451).
- □ Data format and TEDS are the same (both follow the Dot 0 standard)..

Dot 5 TIM built from a Dot 2 TIM and wireless transceiver

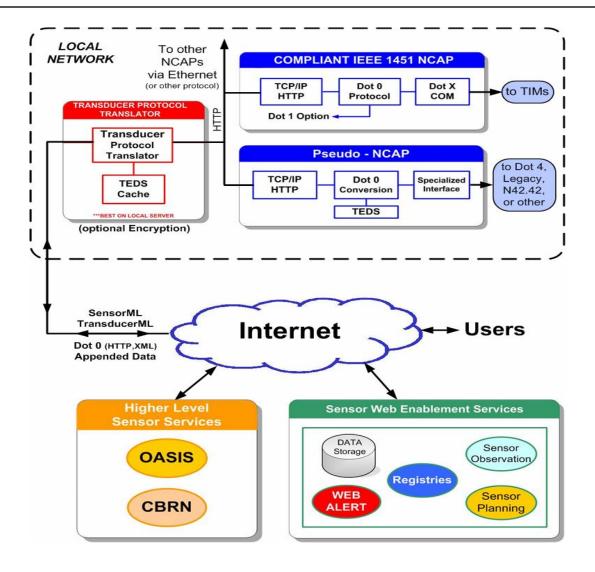
Alternative Tester for Dot 4 TEDS

IEEE 1451.4 (only) does not use the Dot 0 format TEDS. This is a small, TEDS-only version (no digital data format is specified by the standard).

Transducer Electronic Data Sheet (Dot 4 TEDS)

- UUID (Universal Unique Identifier)
 Supplied by EEPROM (DS2433) manufacturer (6 bytes)
- □ Basic TEDS (8 bytes)
 - □ Model Number (15 bits)
 - □ Version Letter (5 bits, A-Z)
 - □ Version Number (6 bits)
 - □ Manufacturer ID (14 bits)
 - □ Serial Number (6 bits)
- □ Manufacturer's TEDS

Sensor type and calibration parameters (16 bytes)

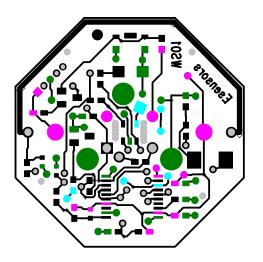

Conversion to Dot 0 TEDS possible (but not unique)

Dot 4

Dot 4 TEDS Writer and Reader (PC Screens)

Esensors Inc IEEE 1451.4 Minimal NCAP Module TEDS WRITER	Esensors Inc IEEE 1451.4 Minimal NCAP Module TEDS READER
Serial Number [24 BITS] Version Number [6 BITS] Version Letter [5 BITS] Model Number [15 BITS] Manufacturer ID [14 BITS] [100100100101010101010 [111000 [01010 [110011001100110 [00110011001100 MSB AA AA E1 59 99 CC CC	Family Code Unique Serial Code CRC 14 22D534010000 B6 BASIC TEDS: SERIAL NO101 VERSION NUMBER1 VERSION NUMBER1 VERSION LETTERE MODEL NO6 MANUFACTURER ID34
STATUS: 2:15:58 PM Reset Passed Verified Passed ProgrammedPassed TEDS OK failed	STATUS:4 2:51:12 PM RESETPassed TEDS READPassed CRC TESTPassed
CONVERT VERIFY PROGRAM RESET BACK	READ RESET BACK
Writer	er Reader

Harmonization of IEEE 1451 with other sensor standards



Wireless Sensor Networks

- □ Currently fashionable in academic and VC circles
- Recently available low-cost, high performance RF transceiver chips greatly simplify design
- Improvements in embedded microcomputers and smart sensor design also make wireless sensors much more practical now
- □ Can be lower cost and easier to use than wired sensors
- □ Point-to-point and mesh protocols available.
- □ Specialized sensor networks (e.g. Zigbee) much more efficient for wireless sensors, especially battery operated.
- □ Lack of standards inhibiting growth of industry.

Wireless Sensor Example

- □ WS01 wireless temperature sensor
- □ 433 MHz FSK range 10 to 100 meters
- □ 3-volt coin battery

Printed Circuit Board (back)

Photo (front)

RFID with Sensors

- Combines Radio Frequency IDentification with sensors
- Uses standard (ISO/IEC) RFID communication/format with additional sensor memory section
- □ Sensor format is based in IEEE 1451 protocol
- Typical application is tracking and monitoring perishable shipments (temperature, shock/vibration)

Summary

- Electronic sensors and signal conditioners were reviewed
- □ Smart sensor design examples given
- Wired and wireless sensor networks were discussed
- The importance of sensor network standards (IEEE 1451) were stressed
- □ Comment made on networked sensor futures

Contact: designer@eesensors.com