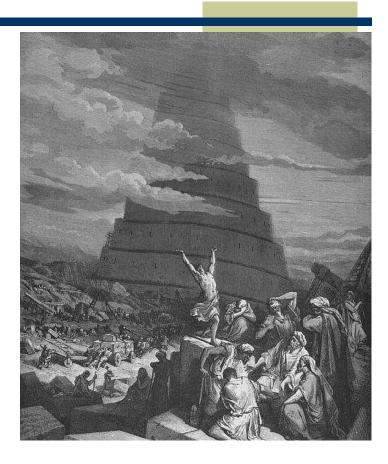
An IEEE 1451 TEDS Compiler and Serial Network Compliance Tester

Darold Wobschall, Wie Liu and Wai Sing Poh Esensors Inc. and University at Buffalo Buffalo, NY

www.eesensors.com

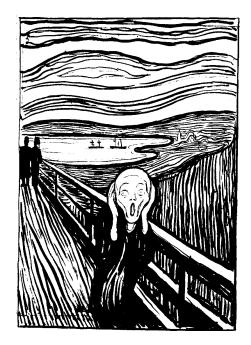

Sensor Standards Harmonization -- Sensors Expo Chicago, June 2006

Goals

- To develop a simple IEEE 1451 TEDS compiler (writer/reader), including linear calibration procedure
- To develop an Internet-compatible compliance tester for the standard (using a serial bus with extensions to other buses/networks)
- Demonstrate the tester using an RS232 (Dot 2) TIM
- Suggest a pathway for harmonization with other standards

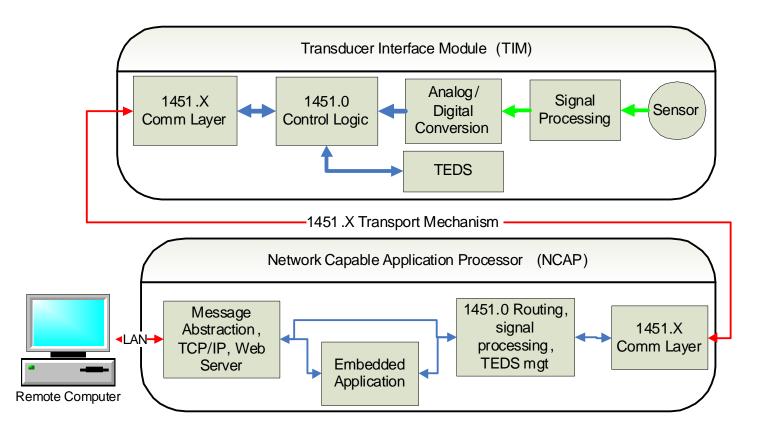
IEEE 1451 – the Universal Transducer Language

- Over 100 sensor network protocols in common use
- Narrow solutions and borrowed protocols have not worked
- IEEE 1451 is the best universal solution
- Sensor engineers in the fragmented sensor industry need a simple method of implementation
- How can it be done?


The Tower of Babel

IEEE 145.0 (Dot 0) Advantages

- Comprehensive enough to cover nearly all sensors and actuators in use today (not 20/80% approach)
- Many operating modes
 (buffered, no-buffer, grouped sensors, timestamps, timed data, streaming ...)
- Extensive units, linearization and calibration options
- Multiple timing and data block size constraints handled.
- Compatible with most wired and wireless sensor buses and networks (point-to-point, mesh, TIM-to-TIM, mixed networks).
- Efficient binary protocol (especially suitable for wireless)


But the Complexity!

- A comprehensive standard is necessarily complex
- There was little adoption of the original IEEE 1451.2 (TII) standard because of its perceived complexity
 - Manual preparation of the TEDS is not practical
- A TEDS compiler is needed
 - A compliance test procedure is also desirable to prove that the design is correct

Munch – The scream

A review of the IEEE 1451 Smart Transducer Concept

IEEE 1451.0 (Dot 0) Format

- Required TEDS [Memory block with defined format]
 - MetaTEDS
 - Channel TEDS
 - Calibration TEDS (unless SI units)
 - Xdr-name TEDS
 - Phy TEDS
 - Also optional TEDS
- Data Transmission [specific octet format]
 - TEDS/Status requests
 - Triggering and configuration
 - Sensor read commands and data return
 - Actuator write commands and data sending

TEDS Format

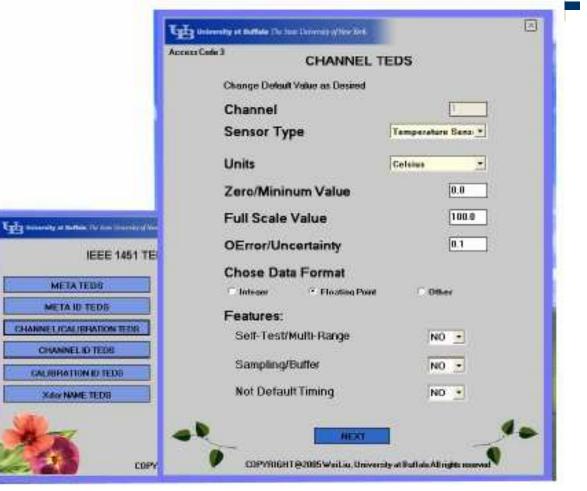
• General format for each TEDS section:

Field	Description	Data Type	Number of Bytes
	TEDS Length	UInt32	4 bytes
1 to N	Data Block	Variable	Variable
	Checksum	Uint16	2 bytes

• Binary TEDS Tuple format for each data block:

Type-Length-value (TLV)

Example: 01 02 A3 04


Field type is 1, Length is 2 bytes, field value is "A304" hex

• Field example: Meta-TEDS (TEDS # 1)

13: Number of Implemented Transducer Channels (default=1)

TEDS Compiler

- Part of Ph. D. thesis
 Wai Liu
 (Univ. at Buffalo)
- Copy of thesis is available free

TEDS Sections Implemented

- Meta TEDS
- Meta ID TEDS
- Transducer Channel TEDS
- Transducer Channel ID TEDS
- Calibration TEDS
- Calibration ID TEDS
- XdrcName TEDS

Referenced by TEDS section/access code (e.g. #1 for Meta-TEDS)

Standard Transducer Units (binary format)

SI Based Units

Base Quantity	Name	Unit Symbol
Length	meter	m
Mass	kilogram	kg
Time	second	S
Electric current	ampere	A
Thermodynamic temperature	Kelvin	K
Amount of substance	mole	mol
Luminous intensity	candela	cđ

Field	Description	Data Type	Number of octets
1	Physical units interpretation	UInt8	1
2	(2 * <exponent of="" radians="">) + 128</exponent>	UInt8	1
3	(2 * <exponent of="" steradians="">) + 128</exponent>	UInt8	1
4	(2 * <exponent meters="" of="">) + 128</exponent>	UInt8	1
5	(2 * <exponent kilograms="" of="">) + 128</exponent>	UInt8	1
6	(2 * <exponent of="" seconds="">) + 128</exponent>	UInt8	1
7	(2 * <exponent amperes="" of="">) + 128</exponent>	UInt8	1
8	(2 * <exponent kelvins="" of="">) + 128</exponent>	UInt8	1
9	(2 * <exponent moles="" of="">) + 128</exponent>	UInt8	1
10	(2 * <exponent candelas="" of="">) + 128</exponent>	UInt8	1

Dot 0 Command/Response Structure

Byte Number	Description
1	Destination Transducer Channel Number (Most significant byte)
2	Destination Transducer Channel Number (Least significant byte)
3	Command Class
4	Command Function
5	Length (Most significant byte)
6	Length (Least significant byte)
7-N	Command dependent bytes
]	NCAP Command Message Structure

Byte Number	Description
1	Success/Fail Flag
2	Length (Most significant byte)
3	Length (Least significant byte)
4-N	Reply dependent bytes
	TIM Doply Magaga Structure

TIM Reply Message Structure

Meta-TEDS Writer Screen

University at Buffalo Th

CHANNEL/CALIBRA

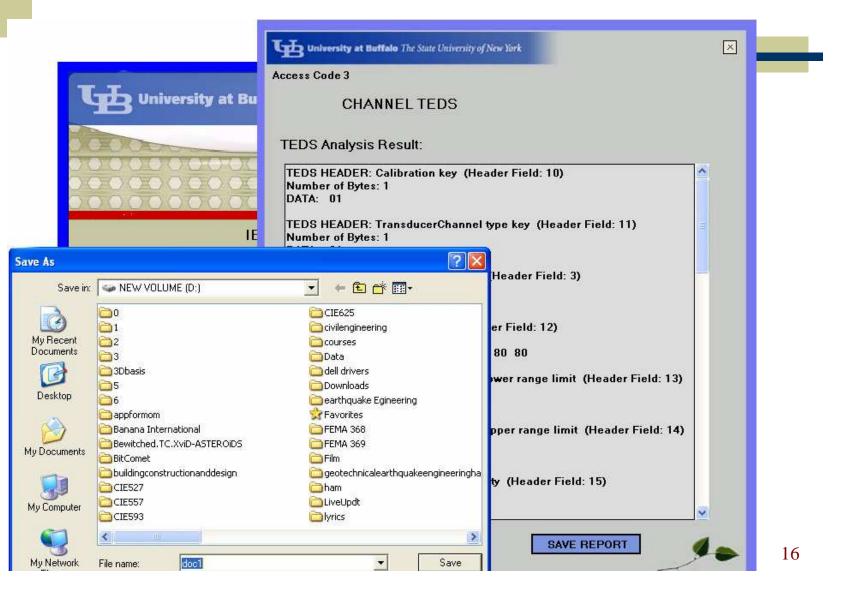
CHANNEL ID T CALIBRATIONIE

13 C	University at Buffalo The State University of New York	X	
	Access Code 1		
	META TEDS		
ersity at Buffalo The State University of Ne	Change Default Value as Desired		
IEEE 1451 TE	Enter ZIPCODE For UUID	14228	
META TEDS	Number of Implemented Trans	ducer Channels	
META ID TEDS		1	
NEL/CALIBRATION TEDS			
CHANNEL ID TEDS	Operational Time-Out (Sec)	1.0	
ALIBRATION ID TEDS	Slow Access Time-Out (Sec)	1.0	
Xder NAME TEDS			
6	Self-Test Time (Sec)	1.0	
Сор	Using Control/Vector/Proxy Gr	oups NO -	
		acha luc Ti	
		4-	
	NEXT		
	COPYRIGHT@2005 Wei Liu, University a	at Buffalo All rights reserved	13

Channel/Calibration TEDS (for linear sensors)

University at Buffalo The State University

META TEDS META ID TEDS CHANNEL/CALIBRATION TEDS CHANNEL ID TEDS CALIBRATION ID TEDS Xdcr NAME TEDS


IEEE 1451

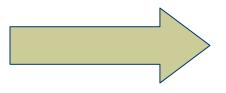
	University at Buffalo The State University of New York	
	Access Code 3 CHANNEL TEDS	
	Change Default Value as Desired	
of Net	Channel	
	Sensor Type Temperature Sens	
TE	Units Celsius 🔽	
	Zero/Mininum Value 0.0	
j	Full Scale Value 100.0	
	OError/Uncertainty 0.1	
	Chose Data Format	
-	C Integer 💽 Floating Point C Other	
	Features:	
_	Self-Test/Multi-Range NO -	
DP1	Sampling/Buffer NO -	
	Not Default Timing	
	NEXT	14

Text Based TEDS (human readable)

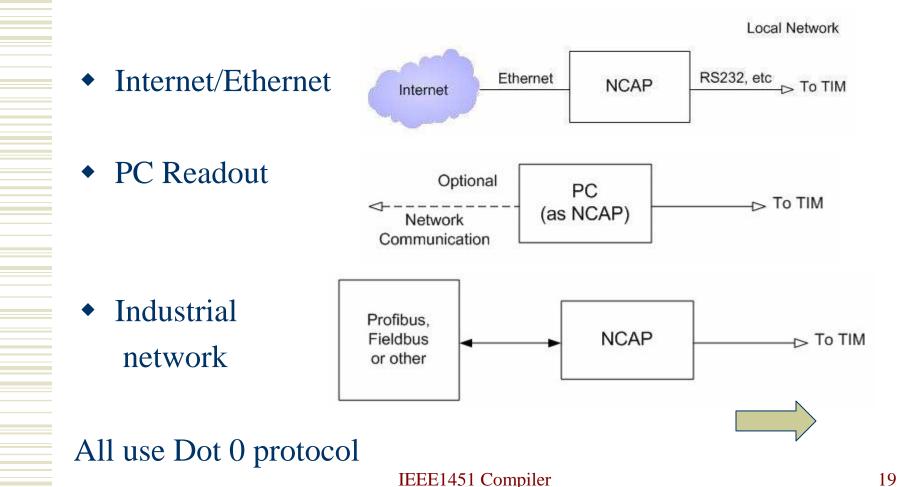
- Meta ID TEDS
- Transducer Channel ID TEDS
- Calibration ID TEDS
- XdcrName TEDS (required)
 - ASCII or XML multiple languages available EN: English QC: computer language (additional data)

TEDS Reader

IEEE 451 TIM Compliance Tester


• TIM (Transducer Interface Module) is most complex and done by sensor design engineers

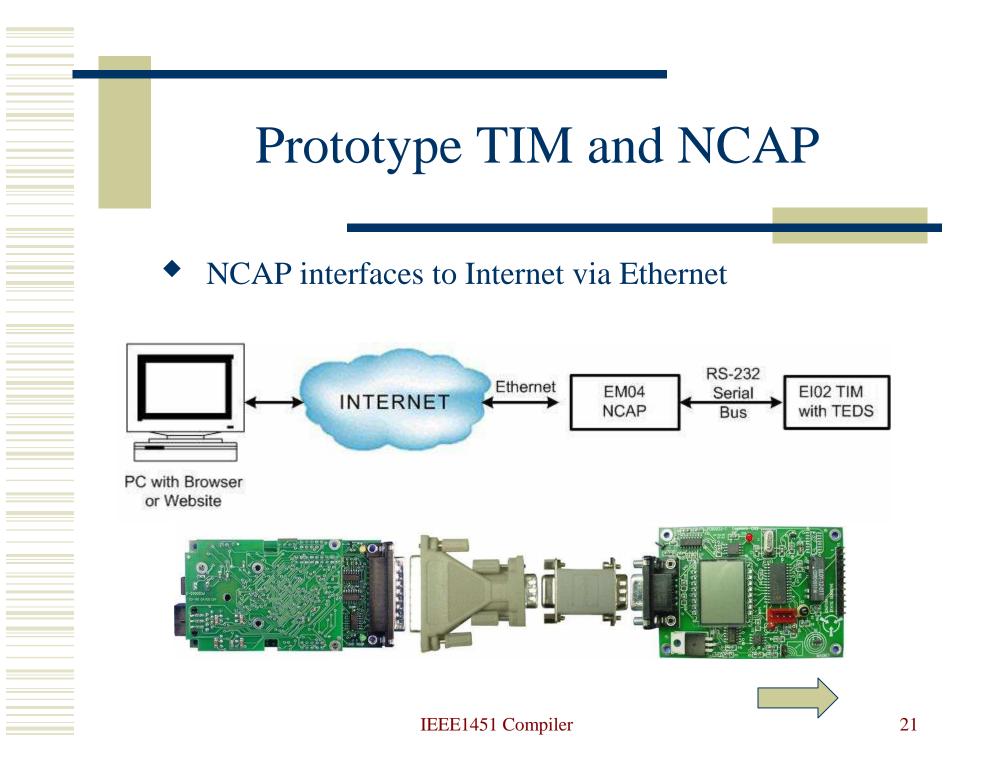
(TIM tester can be used by the few NCAP designers)


- Tester verifies compliance of a TIM to IEEE 1451.0 (Dot 0) protocol
- Focus is on TEDS checking and data transfer format
- Physical device compliance not checked (part of other standards, e.g. RS485, Bluetooth)
- Tester uses serial bus (RS232)
- Testing may be done by Internet

Standard TIM/NCAP Configurations

The following 3 slides describe TIM and NCAP configurations for which the TIM tester can be used

Network side (NCAP) options (wired)


Data Readout Examples (via Internet)

 Sensor data converted to ASCII for display

ahttp://1	92.168.	0.68/index	.htm?0	1800100 - Mic	rosoft Interne	t Explorer	
File Edit	View	Favorites	Tools	Help			
G Back	• 🕥	- 💌 🕻	1) 🛛 🔎 Search	Ravorite	s 💽 Media	»
Address 🦉	http://:	192.168.0.68	3/index.h	ntm?01800100		💌 🛃 Go	Links
EM0402	:XX01	00000000	01***	******	*******	********	**
🙆 Done						Internet	//.

 TEDS data is displayed in hexadecimal form

TEDS Compliance Tester Retrieval Sequence

- Read TIM Version
- Read IEEE p1451.0 Version
- Query Meta ID TEDS
- Query Meta TEDS
- Get Meta TEDS Content
- Query Transducer Channel TEDS
- Get Transducer Channel TEDS Content
- Query Calibration TEDS
- Get Calibration TEDS Content
- Query Transducer Channel ID TEDS
- Query Calibration ID TEDS

TIM Tester (Operating Mode)

Query Channel TEDS from Channel 3: 00000c000400000054o2970000098

Bistonersity at Baffata The Mare Chargerrity of New York

Get Channel TEDS Content from Channel 3: 90006c000000000000640304000301010x01000601000 100101120a2801042901032a02000114043dcccccd1604 37d1b71717043dcccccd188441100889190437d1b7171a0 440a00001103310101e207

Query Calibration TEDS from Channel 3:

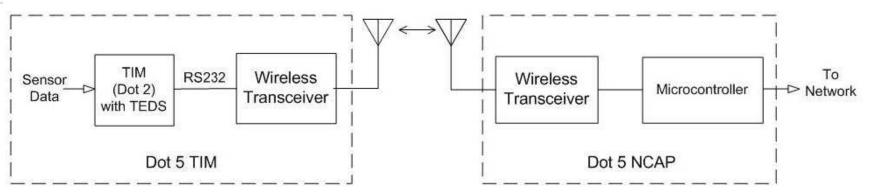
Query Channel ID TEDS from Channel 3: 000002010400000000000000000000

Query Calibration ID TEDS from Channel 3: 00000c0104000000000000000000000

00000500000000000

Similar test sequence for Idle Mode

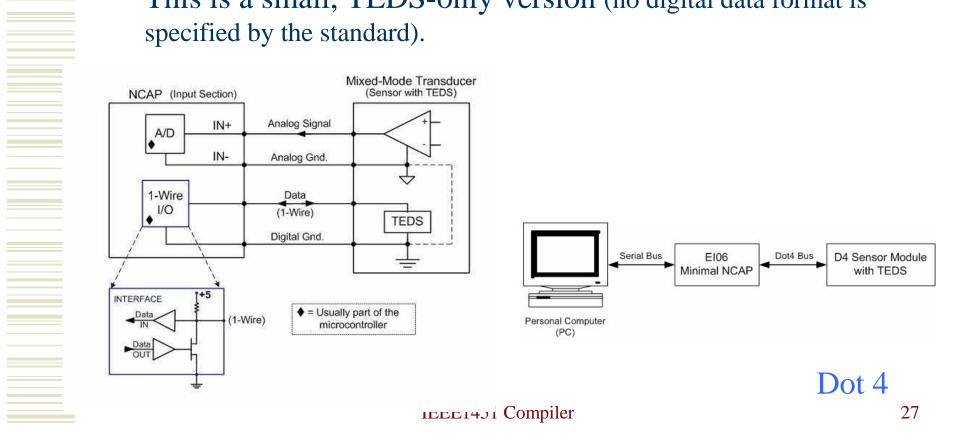
TIM Tester – Data retrieval



Serial Bus Format and Relation to other Networks

- Tester uses RS232 serial bus only but...
- Interfaces to other physical devices (USB, RS485, Bluetooth, Zigbee,) available.
- TEDS retrieval is one feature
- Sensor data read (protocol check) for each channel: *Idle mode* – full scale value of sensor reading (Checked against TEDS, error flag is not correct) *Operating mode* – actual sensor reading (Must be within sensor range)

Example – Wireless Connection


- <u>Wireless modules with RS232 I/O</u> when connected to Dot 2 TIMS are similar to IEEE 1451.5 TIMs (wireless version of IEEE 1451).
- Data format and TEDS are the same (both follow the Dot 0 standard)..

Dot 5 TIM built from a Dot 2 TIM and wireless transceiver

Alternative Tester for Dot 4 TEDS

IEEE 1451.4 (only) does not use the Dot 0 format TEDS. This is a small, TEDS-only version (no digital data format is specified by the standard).

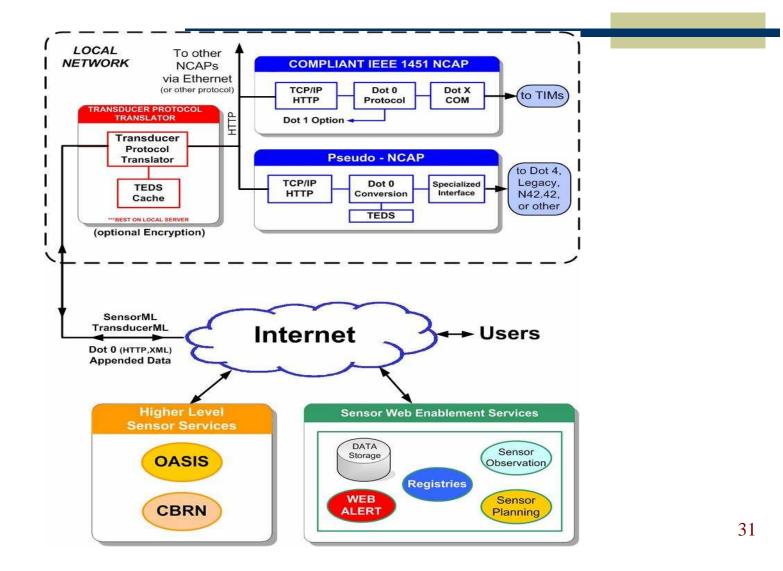
Transducer Electronic Data Sheet (Dot 4 TEDS)

- UUID (Universal Unique Identifier)
 Supplied by EEPROM (DS2433) manufacturer (6 bytes)
- Basic TEDS (8 bytes)
 - □ Model Number (15 bits)
 - □ Version Letter (5 bits, A-Z)
 - □ Version Number (6 bits)
 - □ Manufacturer ID (14 bits)
 - □ Serial Number (6 bits)
- Manufacturer's TEDS

Sensor type and calibration parameters (16 bytes)

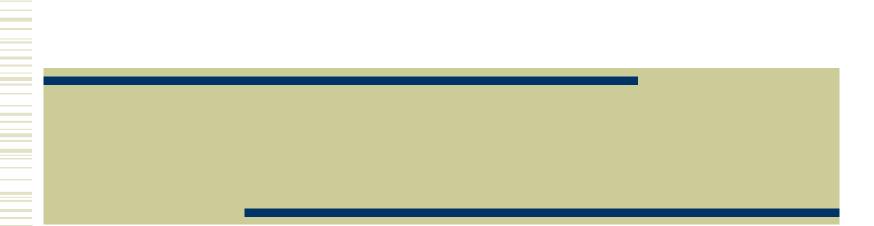
Conversion to Dot 0 TEDS possible (but not unique)

Dot 4


Dot 4 TED	OS Writer and Reader (PC Screens)
Esensors Inc IEEE 1451.4 Minimal NCAP Module TEDS WRITER	Esensors Inc IEEE 1451.4 Minimal NCAP Module TEDS READER
Serial Number [24 BITS] Version Number [6 BITS] Version Letter [5 BITS] Model Number [15 BITS] Manufacturer I [1000] [11000] [11000] [11001] [00110011001100] [00110011001100] MSB AA AA E1 59 99 CC CC	
STATUS: 2:15:58 PM Reset Passed Verified Passed ProgrammedPassed TEDS OK failed	STATUS:4 2:51:12 PM RESETPassed TEDS READPassed CRC TESTPassed
CONVERT VERIFY PROGRAM RESET BACK	READ RESET BACK
Writer	Dot 4 Reader
	IEEE1451 Compiler 29

Naming the IEEE 1451 Standard -- a suggestion --

TEDSup


Transducer Electronic Data Sheet Universal Protocol

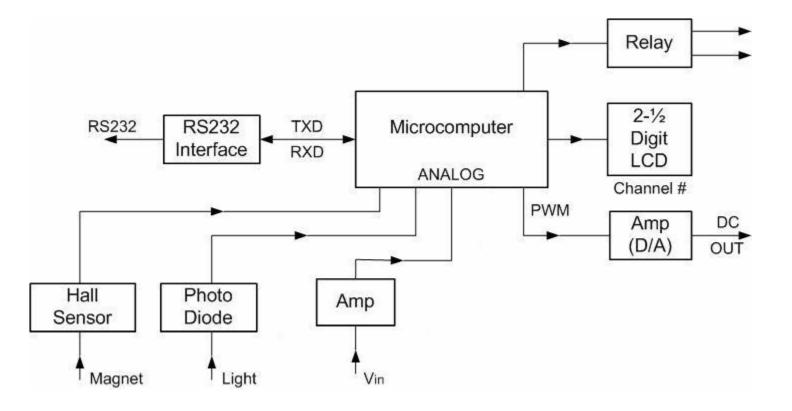
Harmonization of IEEE 1451 with other sensor standards

Summary

- We have developed an IEEE 1451 TEDS compiler (writer/reader), including a linear calibration procedure
- We have developed and tested an Internet-compatible Dot 0 compliance tester using a serial bus (with extensions to other buses/networks)
- A Dot 4 TEDS Reader/writer was described.
- Harmonization suggestions were given. *Further information: designer@eesensors.com*

Backup Slides

An IEEE 1451 TEDS Compiler and Serial Network Compliance Tester


www.eesensors.com

UUID Format

Bit Number	Data Description
Bit 1	Bit 1=0(North)Bit 1=1(South)
Bit 2-Bit 21	Manufacturer Latitude (Binary format)
Bit 22	Bit 22=0(East)Bit 22=1(West)
Bit 23-Bit 42	Manufacturer Longitude (Binary format)
Bit 43-Bit 46	Arbitrary Field=0000 (Binary format)
Bit 47-Bit 58	Year (Binary format)
Bit 59-Bit 80	Time (Binary format)

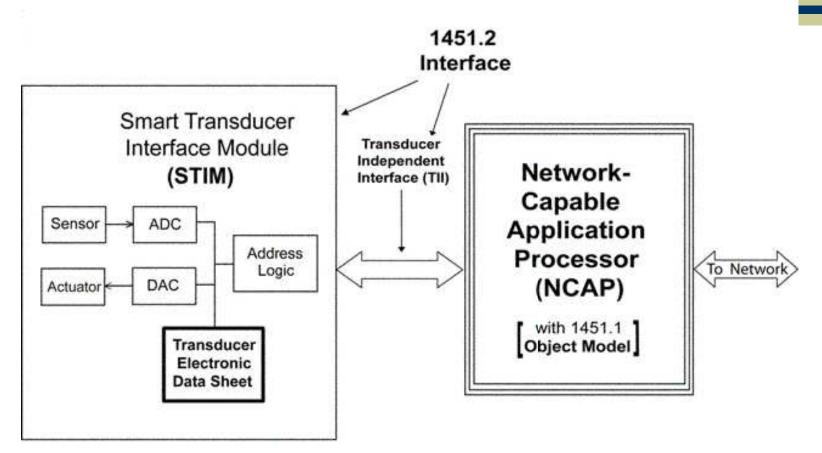
Meta-TEDS (#1), field 4 (10 bytes)

Block Diagram of a Prototype Dot 2 TIM or Smart Transducer

Prototype Dot 2 (RS232) TIM (with 2 sensors and 1 actuator)

Photo IEEE1451 Compiler

37


TEDS/Test Data File Save

	ЧВ	Jniversity at I	Buffalo The St	ate Univer	rsity of Net	w York	-			
elect TEDS Fil	e	00000	60000		? 🔀		<u>1</u>	Sal		
Look in:	Service New Volu	ME (D:)	- E) 🕂 📰 -		on 1.0				
My Recent Documents Desktop My Documents	 test vbuzzer 技師考試 父亲 父亲 金awseperson admin ATC cteds down existing_accee fe_civil_engin fe_reference fixBlast 	pt_tos eering cs	8%9D%E5%9B%BD%	28bbs.cnxp.co	m%29%E4%I	EDs File to	se			
	<				>					
My Network Places	File name: Files of type:	cteds			Open Cancel	5 Wei Liu, Univ	ersity at Buffal	o All rights reserv	ved	38
					60.55		556			20

References

- Wai Liu, "Design of TEDS Writer, Reader and Testing System for Transducer Interface Modules based on the IEEE 1451 Standard", Ph. D. thesis (SUNY/Buffalo, EE Dept), May 2006.
- R. Johnson, et al "A Standard Smart Transducer Interface" http://ieee1451.nist.gov/Workshop_04Oct01/1451_overview.pdf
- IEEE Std. 1451.2-1907 "IEEE Standard for a Smart Transducer Interface for Sensors and Actuators – Transducer to Microprocessor Communication Protocols and Transducer Electronic Data Sheet (TEDS) Format" <u>http://ihome.ust.hk/~yangrd/pdf/ieee14512.pdf</u>
- R. Frank "Understanding Smart Sensors", 2nd ed, Artech House (2000)
- D. Wobschall, "Websensor Design Smart sensors with an Internet Address" Proceeding Sensors Expo (Philadelphia, Oct. 2001)
- D. Wobschall, "A Minimal Dot4 NCAP with a Compatible Sensor Bus", SiCon/05 (Houston).
- <u>www.eesensors.com/IEEE1451</u>

Original IEEE 1451.2 (Dot 2) With 10-pin Transducer Independent Interface (TII)

Note: New name is TIM (Transducer Interface Module)

IEEE 1451 Parts

- IEEE 1451.0 Protocols & formats (final ballot, 2006)
- IEEE 1451.1 Object model
- IEEE 1451.2 Serial

- IEEE 1451.3 Local network
- IEEE 1451.4 Analog & TEDS
- IEEE 1451.5 Wireless
- IEEE 1451.6 Open CAN

(approved 1999)
(approved 1997)*
(approved 2003)
(approved 2004)
(close to final)
(early approval process)

* Enhancement /revision working group in process

• END