A Sensor Network for Buildings Based on the DALI Bus

Yuan Ma and <u>Darold Wobschall</u> Esensors Inc. and University at Buffalo Buffalo, NY

www.eesensors.com

Sensors Application Symposium (SAS) San Diego, Feb. 2006

Sensor/DALI Bus

b

Goals

- To develop and demonstrate a an extended version of the DALI bus suitable for sensor data acquisition.
- To provide a conversion of the DALI to IEEE 1451 format.

Description of Standard DALI Bus

- DALI: Digital Addressable Lighting Interface
- Developed for building lighting control, especially ballasts
- Two-wire bus: 12/15 volts with 250 mA current limit
- Master data is standard RRZ (like UART, but bi-phase encoding, 1200 bits/sec)
- Slave (remote) device shorts bus for logic 0.
- 16-bit command with 8-bit return, with timeouts
- Operates up to 300 meters (14 to 22 gage wire)

Standard DALI Block Diagram

DALI Bus Waveform

DALI Bus Characteristics

- Data and power on two wires
- Oriented to lighting control
- Many DALI device suppliers
- Noise immune (low data rate, higher voltage/current bus)
- Data return too slow and limited for sensor data

DALI Master (Driver) Interface Circuit

DALI Remote (Slave) Interface Circuit

Extended DALI Concept

- Use same voltage/current limit as standard DALI
- Be compatible with standard DALI (co-existence on same bus)
- Increase speed to 9600 Bits/sec (standard DALI ignores)
- Increase data return (7+ bytes)
- Provide TEDS (IEEE 1451.4) for ID
- Provide gateway to IEEE 1451.0 (Dot 0) protocol
- Also provide wireless option

A review of the IEEE 1451 Smart Transducer Concept

From Smart Sensor Systems

Master=NCAP, Slave=TIM

IEEE 1451.0 (Dot 0) Format

- Required: Transducer Electronic Data Sheet (TEDS) [Memory block with defined format]
 - MetaTEDS
 - Channel TEDS
 - Calibration TEDS (unless SI units)
 - Xdr-name TEDS
 - Phy TEDS
 - Also optional TEDS
- Data Transmission [specific octet format]
 - TEDS/Status requests
 - Triggering and configuration
 - Sensor read commands and data return
 - Actuator write commands and data sending

Dot 0 Command/Response Structure

Byte Number	Description		
1	Destination Transducer Channel Number (Most significant byte)		
2	Destination Transducer Channel Number (Least significant byte)		
3	Command Class		
4	Command Function		
5	Length (Most significant byte)		
6	Length (Least significant byte)		
7-N	Command dependent bytes		
NCAP Command Message Structure			

Byte Number	Description
1	Success/Fail Flag
2	Length (Most significant byte)
3	Length (Least significant byte)
4-N	Reply dependent bytes

TIM Reply Message Structure

Simplified (Dot 4) TEDS (developed for IEEE 1451.4)

- UUID (Universal Unique Identifier)
 Supplied by EEPROM (DS2433) manufacturer (6 bytes)
- Basic TEDS (8 bytes)
 - □ Model Number (15 bits)
 - □ Version Letter (5 bits, A-Z)
 - version Number (6 bits)
 - □ Manufacturer ID (14 bits)
 - □ Serial Number (6 bits)
- Manufacturer's TEDS

Sensor type and calibration parameters (16 bytes)

Conversion to Dot 0 TEDS done in NCAP

Dot 4

Block Diagram of Extended DALI Bus

Extended DALI Data Frame Format

Control Field	Data Field	CRC Field	ACK Filed
---------------	------------	-----------	-----------

Arbitration	Description +	Slave ID	Command/Data	CRC	FF hex
(1-byte)	Length (1byte)	(1 byte)	(N bytes)	(2 bytes)	(1 byte)

Examples of Master Slave Responses

Master Requests Illumination and Temperature from Slave

		Data Field	
Slave	0x01(inquiry	Illumination code	Temperature code
address	Command)		

Slave Response (Illumination and Temperature Data to Master)

Data Field					
Slave 0x01(Answer Illumination Illumination Temperature Tempera					
address Inquiry) code Data code Dat					

Data Readout Examples (via Internet)

ATA From DAL	:				
Juery Lamp Status, R	esult=0H :				~
it 0 = 0 Local switch is	OFF				
iit1=0 Lamp is workir	ng;				
it 2 = 0 Lamp is OFF;					
it 3 = 0 Last requester	arc power level is between	MINMAX LEVEL;			
it 4 = 0 Fade is ready					
it 5 = 0 Lamp is ready	to be reseted;				
it b = 0 Short address	IS UK;				
It / = 0 RESET or cer	tain arc power control comma	ands have been receivi	ed aπer last power-on;		
tivo moccado from m	actor: Soncor 002 Switch ON	11 12-53-12 DM			
tive message rom m	aster: Sensor 002, Switch ON	ne-002.12/53/13 PM			
tive message from m	aster: Sensor002: illuminatio	ns:002 12:53:14 PM			
ctive message from m	aster: Sensor 004: Switch ON	12:53:15 PM			
tive message from m	aster: Sensor002: illumination	ns:002 12:53:15 PM			
ctive message from m	aster: Sensor004: illumination	ns:004 12:53:15 PM			
ctive message from m	aster: Sensor002: illuminatio	ns:003-12:53:16 PM			
ctive message from m	aster: Sensor004: illuminatio	ns:004-12:53:16 PM			
ctive message from m	aster: Sensor002: illuminatio	ns:004-12:53:17 PM			
tive message from m	ector: Concor004: illumination	ns:003_12:53:18 PM			
sive message nom m	aster. Sensoroo4. mummatio				
tive message from m	aster: Sensor002: illumination	ns:004 12:53:19 PM			
tive message from m tive message from m	aster: Sensor004: illuminatio aster: Sensor002: illuminatio aster: Sensor004: illuminatio	ns:004 12:53:19 PM ns:002 12:53:19 PM			~
tive message from m tive message from m	aster: Sensor004: illuminatio aster: Sensor004: illuminatio aster: Sensor004: illuminatio	ns:004 12:53:19 PM ns:002 12:53:19 PM			~
tive message from m tive message from m	aster: Sensor004: illumination aster: Sensor004: illumination aster: Sensor004: illumination	ns:004 12:53:19 PM ns:002 12:53:19 PM			
tive message from m tive message from m	aster: Sensor002: illumination aster: Sensor002: illumination aster: Sensor004: illumination	ns:004 12:53:19 PM ns:002 12:53:19 PM ntMatch: 0 Bus Err: 0	Display OFF	Clear Display	
tive message from m tive message from m 90–48 57 57 48 No.=1	aster: Sensor004: illumination aster: Sensor004: illumination aster: Sensor004: illumination	ns:004 12:53:19 PM ns:002 12:53:19 PM otMatch: 0 Bus Err: 0	Display OFF	Clear Display	START AUTO TX
200–48 57 57 48 No.=1	aster: Sensor002: illumination aster: Sensor004: illumination bootstand bootstand bootstand	ns:004 12:53:19 PM ns:002 12:53:19 PM otMatch: 0 Bus Err: 0	Display OFF	Clear Display	START AUTO TX
200–48 57 57 48 No.=1	aster: Sensor004: illumination aster: Sensor004: illumination both DTXCount=1 TimeOut: 1 No DALI STANDARD (ns:004 12:53:19 PM ns:002 12:53:19 PM otMatch: 0 Bus Err: 0 COMMAND	Display OFF Scene/Group No.	Clear Display	START AUTO TX
90–48 57 57 48 No.= DALI ADDRESS	DUERY STATUS	ns:004 12:53:19 PM ns:002 12:53:19 PM otMatch: 0 Bus Err: 0 COMMAND	Display OFF Scene/Group No.	Clear Display	START AUTO TX
190–48 57 57 48 No.= DALI ADDRESS	aster: Sensor002: illumination aster: Sensor002: illumination aster: Sensor004: illumination DALI STANDARD (QUERY STATUS	ns:004 12:53:19 PM ns:002 12:53:19 PM otMatch: 0 Bus Err: 0 COMMAND	Display OFF Scene/Group No.	Clear Display Send Std DALI Cmd	START AUTO TX
190–48 57 57 48 No.= DALI ADDRESS	aster: Sensor002: illumination aster: Sensor004: illumination DTXCount=1 TimeOut: 1 No DALI STANDARD (QUERY STATUS	ns:004 12:53:19 PM ns:002 12:53:19 PM otMatch: 0 Bus Err: 0 COMMAND	Display OFF Scene/Group No.	Clear Display Send Std DALI Cmd	START AUTO TX
190–48 57 57 48 No.= DALI ADDRESS	aster: Sensor002: illumination aster: Sensor002: illumination aster: Sensor004: illumination DALI STANDARD (QUERY STATUS	ns:004 12:53:19 PM ns:002 12:53:19 PM otMatch: 0 Bus Err: 0 COMMAND	Display OFF Scene/Group No.	Clear Display Send Std DALI Cmd Test ON	START AUTO TX Test Addr
190–48 57 57 48 No.= DALI ADDRESS	aster: Sensor002: illumination aster: Sensor002: illumination aster: Sensor004: illumination DALI STANDARD (QUERY STATUS L COMMAND:	ns:004 12:53:19 PM ns:002 12:53:19 PM otMatch: 0 Bus Err: 0 COMMAND V PARA. of SPECIA	Display OFF Scene/Group No.	Clear Display Send Std DALI Cmd Test ON	START AUTO TX Test Addr
190–48 57 57 48 No.= DALI ADDRESS 4 DALI SPECIA TERMINATE	aster: Sensor002: illumination aster: Sensor002: illumination batter: Sensor004: illumination DALI STANDARD (QUERY STATUS L COMMAND:	ns:004 12:53:19 PM ns:002 12:53:19 PM otMatch: 0 Bus Err: 0 COMMAND PARA. of SPECIA	Display OFF Scene/Group No.	Clear Display Send Std DALI Cmd Test ON Send Spe DALI Cmd	START AUTO TX
190–48 57 57 48 No.= DALI ADDRESS 4 DALI SPECIA TERMINATE	aster: Sensor002: illumination aster: Sensor002: illumination batter: Sensor004: illumination DALI STANDARD (QUERY STATUS L COMMAND:	ns:004 12:53:19 PM ns:002 12:53:19 PM otMatch: 0 Bus Err: 0 COMMAND PARA. of SPECI/ 0	Display OFF Scene/Group No.	Clear Display Send Std DALI Cmd Test ON Send Spe DALI Cmd	START AUTO TX Test Addr
190–48 57 57 48 No.= DALI ADDRESS 4 DALI SPECIA TERMINATE	aster: Sensor002: illumination aster: Sensor002: illumination aster: Sensor004: illumination DTXCount=1 TimeOut: 1 No DALI STANDARD (QUERY STATUS L COMMAND:	ns:004 12:53:19 PM ns:002 12:53:19 PM otMatch: 0 Bus Err: 0 COMMAND PARA. of SPECI/ 0	Display OFF Scene/Group No.	Clear Display Send Std DALI Cmd Test ON Send Spe DALI Cmd	START AUTO TX Test Addr
190–48 57 57 48 No.= DALI ADDRESS 4 DALI SPECIA TERMINATE DALI ADDRES	aster: Sensor002: illumination aster: Sensor002: illumination aster: Sensor004: illumination DALI STANDARD (QUERY STATUS L COMMAND:	ns:004 12:53:19 PM ns:002 12:53:19 PM otMatch: 0 Bus Err: 0 COMMAND PARA. of SPECI/ 0	Display OFF Scene/Group No.	Clear Display Send Std DALI Cmd Test ON Send Spe DALI Cmd	Test Addr
DALI ADDRESS DALI ADDRESS DALI ADDRESS DALI ADDRESS DALI SPECIA TERMINATE DALI ADDRESS	aster: Sensor002: illumination aster: Sensor002: illumination aster: Sensor004: illumination DALI STANDARD (QUERY STATUS L COMMAND:	ns:004 12:53:19 PM ns:002 12:53:19 PM otMatch: 0 Bus Err: 0 COMMAND PARA. of SPECI/ 0	Display OFF Scene/Group No.	Clear Display Send Std DALI Cmd Test ON Send Spe DALI Cmd Cle	Test Addr

Amperometric Sensor on DALI bus

Prototype DALI Master and Slave Circuit Boards

TEDS Compiler

- Part of Ph. D. thesis
 Wai Liu
 (Univ. at Buffalo)
- Copy of thesis is available free

References

- Wai Liu, "Design of TEDS Writer, Reader and Testing System for Transducer Interface Modules based on the IEEE 1451 Standard", Ph. D. thesis (SUNY/Buffalo, EE Dept), May 2006.
- IEEE Std.

- D. Wobschall, "A Minimal Dot4 NCAP with a Compatible Sensor Bus", SiCon/05 (Houston).
- <u>www.eesensors.com/IEEE1451</u>

Summary

- We have developed an extension of the DALI bus which is suitable for acquiring sensor data.
- Bus was tested with bus consisting of mix of sensors and conventional DALI lighting devices
- The IEEE 1451 protocol with the Dot 4 TEDS and Dot 0 on the network was demonstrated.

Further information: designer@eesensors.com

Backup Slides

www.eesensors.com

IEEE 1451 – the Universal Transducer Language

- Over 100 sensor network protocols in common use
- Narrow solutions and borrowed protocols have not worked
- IEEE 1451 is the best universal solution
- Sensor engineers in the fragmented sensor industry need a simple method of implementation
- How can it be done?

The Tower of Babel

IEEE 145.0 (Dot 0) Advantages

- Comprehensive enough to cover nearly all sensors and actuators in use today (not 20/80% approach)
- Many operating modes
 (buffered, no-buffer, grouped sensors, timestamps, timed data, streaming ...)
- Extensive units, linearization and calibration options
- Multiple timing and data block size constraints handled.
- Compatible with most wired and wireless sensor buses and networks (point-to-point, mesh, TIM-to-TIM, mixed networks).
- Efficient binary protocol (especially suitable for wireless)

But the Complexity!

- A comprehensive standard is necessarily complex
- There was little adoption of the original IEEE 1451.2 (TII) standard because of its perceived complexity
 - Manual preparation of the TEDS is not practical
- A TEDS compiler is needed
 - A compliance test procedure is also desirable to prove that the design is correct

Munch – The scream

TEDS Format

• General format for each TEDS section:

Field	Description	Data Type	Number of Bytes
	TEDS Length	UInt32	4 bytes
1 to N	Data Block	Variable	Variable
	Checksum	Uint16	2 bytes

• Binary TEDS Tuple format for each data block:

Type-Length-value (TLV)

Example: 01 02 A3 04

Field type is 1, Length is 2 bytes, field value is "A304" hex

• Field example: Meta-TEDS (TEDS # 1)

13: Number of Implemented Transducer Channels (default=1)

TEDS Sections Implemented

- Meta TEDS
- Meta ID TEDS
- Transducer Channel TEDS
- Transducer Channel ID TEDS
- Calibration TEDS
- Calibration ID TEDS
- XdrcName TEDS

Referenced by TEDS section/access code (e.g. #1 for Meta-TEDS)

Standard Transducer Units (binary format)

SI Based Units

Base Quantity	Name	Unit Symbol
Length	meter	m
Mass	kilogram	kg
Time	second	S
Electric current	ampere	A
Thermodynamic temperature	Kelvin	K
Amount of substance	mole	mol
Luminous intensity	candela	cđ

Field	Description	Data Type	Number of octets
1	Physical units interpretation	UInt8	1
2	(2 * <exponent of="" radians="">) + 128</exponent>	UInt8	1
3	(2 * <exponent of="" steradians="">) + 128</exponent>	UInt8	1
4	(2 * < exponent of meters >) + 128	UInt8	1
5	(2 * <exponent kilograms="" of="">) + 128</exponent>	UInt8	1
6	(2 * <exponent of="" seconds="">) + 128</exponent>	UInt8	1
7	(2 * <exponent amperes="" of="">) + 128</exponent>	UInt8	1
8	(2 * <exponent kelvins="" of="">) + 128</exponent>	UInt8	1
9	(2 * <exponent moles="" of="">) + 128</exponent>	UInt8	1
10	(2 * <exponent candelas="" of="">) + 128</exponent>	UInt8	1

Meta-TEDS Writer Screen

University at Buffalo The

META TED

META ID TEI

CHANNEL ID T

Xder NAME TE

CHANNEL/CALIBRA

4	University at Buffalo The State University of New York	×	
	Access Code 1		
	META TEDS		
The State University of Ne	Change Default Value as Desired		
IEEE 1451 TE	Enter ZIPCODE For UUID	14228	
EDS	Number of Implemented Transc	ducer Channels	
		1	
D TEDS	Operational Time-Out (Sec)	1.0	
N ID TEDS	Slow Access Time-Out (Sec)	1.0	
	Self-Test Time (Sec)	1.0	
COP	Using Control/Vector/Proxy Gro	oups NO 🔽	
	NEXT COPYRIGHT@2005WeiLiu, University a	t Buffalo All rights reserved	30

Channel/Calibration TEDS (for linear sensors)

University at Buffalo The State University

META TEDS META ID TEDS CHANNEL/CALIBRATION TEDS CHANNEL ID TEDS CALIBRATION ID TEDS Xdcr NAME TEDS

IEEE 1451

Чдэ	niversity at Buffalo The State University of New York	×	
Access	Code 3 CHANNEL TE	DS	
	Change Default Value as Desired		
	Channel	1	
	Sensor Type	Temperature Sens	
E	Units	Celsius 💌	
	Zero/Mininum Value	0.0	
	Full Scale Value	100.0	
	OError/Uncertainty	0.1	
	Chose Data Format		
	C Integer • Floating Point	C Other	
	Solf Tost/Multi Papao	No	
ח	Sampling/Buffer		
	Not Default Timing		
-	NEXT		31

Text Based TEDS (human readable)

- Meta ID TEDS
- Transducer Channel ID TEDS
- Calibration ID TEDS
- XdcrName TEDS (required)
 - ASCII or XML multiple languages available EN: English QC: computer language (additional data)

TEDS Reader

IEEE 451 TIM Compliance Tester

• TIM (Transducer Interface Module) is most complex and done by sensor design engineers

(TIM tester can be used by the few NCAP designers)

- Tester verifies compliance of a TIM to IEEE 1451.0 (Dot 0) protocol
- Focus is on TEDS checking and data transfer format
- Physical device compliance not checked (part of other standards, e.g. RS485, Bluetooth)
- Tester uses serial bus (RS232)
- Testing may be done by Internet

Network side (NCAP) options (wired)

TEDS Compliance Tester Retrieval Sequence

- Read TIM Version
- Read IEEE p1451.0 Version
- Query Meta ID TEDS
- Query Meta TEDS
- Get Meta TEDS Content
- Query Transducer Channel TEDS
- Get Transducer Channel TEDS Content
- Query Calibration TEDS
- Get Calibration TEDS Content
- Query Transducer Channel ID TEDS
- Query Calibration ID TEDS

TIM Tester (Operating Mode)

Query Channel TEDS from Channel 3: 00000c000400000054o2970000098

Bitatementing at Batflata The Man Chainerary of West Land

Get Channel TEDS Content from Channel 3: 90006c0000000000000640304000301010x01000601000 100101120a2801042901032a02000114043dcccccd1604 37d1b71717043dcccccd188441100889190437d1b7171a0 440a00001103310101e207

Query Calibration TEDS from Channel 3:

Query Channel ID TEDS from Channel 3: 000002010400000000000000000000

Query Calibration ID TEDS from Channel 3: 00000c0104000000000000000000000

00000500000000000

Similar test sequence for Idle Mode

TIM Tester – Data retrieval

Serial Bus Format and Relation to other Networks

- Tester uses RS232 serial bus only but...
- Interfaces to other physical devices (USB, RS485, Bluetooth, Zigbee,) available.
- TEDS retrieval is one feature
- Sensor data read (protocol check) for each channel: *Idle mode* – full scale value of sensor reading (Checked against TEDS, error flag is not correct) *Operating mode* – actual sensor reading (Must be within sensor range)

Example – Wireless Connection

- <u>Wireless modules with RS232 I/O</u> when connected to Dot 2 TIMS are similar to IEEE 1451.5 TIMs (wireless version of IEEE 1451).
- Data format and TEDS are the same (both follow the Dot 0 standard)..

Dot 5 TIM built from a Dot 2 TIM and wireless transceiver

Alternative Tester for Dot 4 TEDS

IEEE 1451.4 (only) does not use the Dot 0 format TEDS. This is a small, TEDS-only version (no digital data format is specified by the standard).

Dot 4 TED	S Writer and Reader (PC Screens)				
Esensors Inc IEEE 1451.4 Minimal NCAP Module TEDS WRITER	Esensors Inc IEEE 1451.4 Minimal NCAP Module TEDS READER				
Serial Number [24 BITS] Version Number [6 BITS] Version Letter [5 BITS] Model Number [15 BITS] Manufacturer ID [[0011001100110011001101] Interview Intervie	Family Code Unique Serial Code CRC 14 22D534010000 B6 BASIC TEDS: SERIAL NO ~101 VERSION NUMBER ~1 VERSION LETTER ~E MODEL NO ~6 MANUFACTURER ID ~34				
STATUS: 2:15:58 PM Reset Passed Verified Passed ProgrammedPassed TEDS OK failed	STATUS:4 2:51:12 PM RESETPassed TEDS READPassed CRC TESTPassed				
CONVERT VERIFY PROGRAM RESET BACK	READ RESET BACK				
Writer	Dot 4 Reader				
Sensor/DALI Bus					

Harmonization of IEEE 1451 with other sensor standards

UUID Format

Bit Number	Data Description
Bit 1	Bit 1=0(North)Bit 1=1(South)
Bit 2-Bit 21	Manufacturer Latitude (Binary format)
Bit 22	Bit 22=0(East)Bit 22=1(West)
Bit 23-Bit 42	Manufacturer Longitude (Binary format)
Bit 43-Bit 46	Arbitrary Field=0000 (Binary format)
Bit 47-Bit 58	Year (Binary format)
Bit 59-Bit 80	Time (Binary format)

Meta-TEDS (#1), field 4 (10 bytes)

Block Diagram of a Prototype Dot 2 TIM or Smart Transducer

Prototype Dot 2 (RS232) TIM (with 2 sensors and 1 actuator)

Photo Sensor/DALI Bus

Hall effect

TEDS/Test Data File Save

elect TEDS File	Ч	niversity at I	Buffalo The St	ate Unive	rsity of Ne	w York			
Look in: My Recent Documents Desktop My Documents My Computer Q	 NEW VOLUN test vbuzzer 技師考試 父亲 冬E5%BD%B1 Aawsepersona admin ATC cteds down existing_accept fe_civil_engine fe_civil_engine fe_reference_ FixBlast 	4E (D:) %E8%A7%86%E5%B I ht_tos ering s handbook	▼ ← È	28bbs.cnxp.cc	rm%29%E4%I	on 1.0 EDs File to			
My Network Places	File name: Files of type:	cteds		▼ [▼]	Open Cancel	5 Wei Liu, Univers	ity at Buffalo All right	s reserved	48

References

- Wai Liu, "Design of TEDS Writer, Reader and Testing System for Transducer Interface Modules based on the IEEE 1451 Standard", Ph. D. thesis (SUNY/Buffalo, EE Dept), May 2006.
- R. Johnson, et al "A Standard Smart Transducer Interface" http://ieee1451.nist.gov/Workshop_04Oct01/1451_overview.pdf
- IEEE Std. 1451.2-1907 "IEEE Standard for a Smart Transducer Interface for Sensors and Actuators – Transducer to Microprocessor Communication Protocols and Transducer Electronic Data Sheet (TEDS) Format" <u>http://ihome.ust.hk/~yangrd/pdf/ieee14512.pdf</u>
- R. Frank "Understanding Smart Sensors", 2nd ed, Artech House (2000)
- D. Wobschall, "Websensor Design Smart sensors with an Internet Address" Proceeding Sensors Expo (Philadelphia, Oct. 2001)
- D. Wobschall, "A Minimal Dot4 NCAP with a Compatible Sensor Bus", SiCon/05 (Houston).
- <u>www.eesensors.com/IEEE1451</u>

Original IEEE 1451.2 (Dot 2) With 10-pin Transducer Independent Interface (TII)

Note: New name is TIM (Transducer Interface Module)

IEEE 1451 Parts

- IEEE 1451.0 Protocols & formats (final ballot, 2006)
- IEEE 1451.1 Object model
- IEEE 1451.2 Serial

- IEEE 1451.3 Local network
- IEEE 1451.4 Analog & TEDS
- IEEE 1451.5 Wireless
- IEEE 1451.6 Open CAN

(approved 1999)
(approved 1997)*
(approved 2003)
(approved 2004)
(close to final)
(early approval process)

* Enhancement /revision working group in process

• END