An Ultrasonic/Optical Pulse Sensor for Precise Distance Measurements

Darold Wobschall, Ming Zeng and Bhooma Srinivasaraghavan

State University of New York at Buffalo Dept. of Electrical Engineering

and Esensors, Inc.

Sicon/05 -- Ultrasonic

Goals

- Develop an ultrasonic transit time distance sensor with an optical sync signal
- Demonstrate a pulse cancellation technique for shaping transmitted and received ultrasonic pulses.

Ultrasonic Transmitter/Receiver Transducers

- Transducers are piezoelectric crystals (quartz, ceramic, piezofilm)
- Single or separate transmitter and receiver transducers may be used
- Typical Frequencies used for air transmission are 40 to 100 kHz

• Single pulse produces ringing because of crystal mechanical resonance

• Often a pulse train (4 to 20 cycles) is applied to transmitter to increase transmitted sound amplitude

Conventional Ultrasonic Echo Sensors

Speed of sound in Air @ 20 °C 343 Meter/sec

Sicon/05 -- Ultra

Sicon/05 -- Ultrasonic

Limitations of US Echo Sensors

- Sound intensity decreases rapidly with distance (inverse square) limit is 5 to 20 meters under ideal conditions
- Sound (echo) is small for many objects (e.g. cloth)
- Focused beams increase signal strength (and distance) but aiming is a problem
- Wind and air currents deflect sound (refraction) causing signal dropout (often after 1-5 meters)
- Slow rise of reflected signal amplitude limits distance resolution to 2 to 10 wavelengths (2 to 8 cm @ 40kHz)

Optical Pulse Filtering

 Room illumination larger than optical sync pulses but dc or low frequency (mostly < 120 Hz)

- Sync pulse must be short, i.e., have only high frequency components
- Optical amplifier must have high pass filter

																5																							
																Г	-	•																					
																L		Ŀ																					
																I		Ŀ																					
																L		Ŀ																					
																4		÷																					
																I		Ŀ																					
																L		Ŀ																					
																L		Ŀ																					
																L		Ŀ																					
																4		÷																					
																I		Ŀ																					
																I		Ŀ											-										
																L		Ŀ																					
																L		Ŀ																					
1	I.	I	I.	I.	I.	I.	L	L	L	1	1	1	I.	L	1	t	1	e	ŀ	L	L	I.	L	I.	L	I.	I.	L	1	I.	I.	I.	L	1	1	I.	I.	L	1
																L		Ŀ																					
																L		Ŀ																					
																I		Ŀ																					
										-		-	-					Ŀ				-				-							-						-
																		r.																					

Received Optical Pulse

Ultrasonic Driver Circuit

Delayed Pulse Shaping Method

Measured Transmitter Voltage

Ultrasonic Receiver Circuit

Received Ultrasonic Signal Waveform

Sicon/05 -- Ultrasonic

Microcomputer Circuit

Sicon/05 -- Ultrasonic

Ultrasonic/Optical Sensor Circuit boards

Ultrasonic Receiver (optical transmitter)

Ultrasonic transmitter (optical receiver)

Measured Precision

Application ---An x-ray Dose Monitor Positioning Sensor

Suggested Applications

Virtual Reality

Locate relative position of hands and other objects

Robots

Locate position of robots or small vehicles in a room

Machine motion

Position of moving parts of a machine can be measured

References

- R. John Webster and R. Pallas-Areny "Sensors and Signal Conditioning", 2nd Ed., John Wiley & Sons, 2001
- R. Frank "Understanding Smart Sensors", 2nd ed, Artech House (2000)
- G. Bucci and C. Landi, "Numerical Method for Transit time measurement in Ultrasonic Sensor Applications IEEE Transactions on Instrumentation and Measurement", Vol. 46 No.6, Dec 1997.

Summary

- An ultrasonic pulse shaping technique based on two delayed transmitted pulses was described.
- An optical pulse technique for synchronizing ultrasonic pulses was described
- The precision of the combined ultrasonic transit time distance sensor with optical pulse synchronization was demonstrated.

Further information:designer@eesensors.com