IEEE 1451-- A Universal Transducer Protocol Standard

Dr. Darold Wobschall President, Esensors Inc.

Goals

To describe ----

- □ Relationship of smart sensor and sensor networks
- □ IEEE 1451 Concepts and History
- □ Role of 1451compilers
- □ Wireless 1451 NCAPs and TIM examples
- □ Relationship to sensor standards harmonization

Networked Sensor Block Diagram

Network Sensor Applications

- □ Automatic testing
- □ Plug and play
- □ Multiple sensors on one network or bus
- □ Machine to Machine (M2M) sensor data communications
- □ Wide area (Nationwide) data collection ability

Sensor/Transducer Networks

- A network connects more than one addressed sensor (or actuator) to a digital wired or wireless network
- Both network and sensor digital data protocols are needed
- Standard data networks can be used but are far from optimum
- Numerous (>100) incompatible sensor networks are currently in use – each speaking a different language

The Tower of Babel

IEEE 1451 – the Universal Transducer Language

- □ Problem: too many network protocols in common use
- Narrow solutions and borrowed protocols have not worked
- Sensor engineers in the fragmented sensor industry need a simple method of implementation
- $\square How can it be done?$
- □ We need something like USB, except for sensors
- □ Solution: the IEEE 1451 Smart Transducer Protocol open standard is the best universal solution
- □ Supported by NIST, IEEE and many Federal agencies

A review of the IEEE 1451 Smart Transducer Concept

IEEE1451 Standard Description

IEEE 1451 Advantages

- □ Comprehensive enough to cover nearly all sensors and actuators in use today (not 20/80% approach)
- Many operating modes
 (buffered, no-buffer, grouped sensors, timestamps, timed data, streaming ...)
- □ Extensive units, linearization and calibration options
- □ Multiple timing and data block size constraints handled.
- □ Compatible with most wired and wireless sensor buses and networks (point-to-point, mesh, TIM-to-TIM, mixed networks).
- □ Efficient binary protocol (especially suitable for wireless)
- □ Standard is 400+ pages for basic part, over 1500 page total

But the Complexity!

- A comprehensive standard is necessarily complex
- There was little adoption of the original IEEE 1451.2 (TII) standard because of its perceived complexity
- Manual preparation of the TEDS is not practical -- A TEDS compiler is needed
- A compliance test procedure is also desirable to prove that a design is correct

Munch – The scream

Status of Various Parts of IEEE 1451

1451.0 – Basic data/TEDS format	Done (2007)	
1451.1 – NCAP/Computer Interface	Done (1999)*	
1451.2 – RS-232	Done (1997)*	
1451.3 – Wired Multi-drop	Done (2002)*	
1451.4 – TEDS Only	Done (2005)	
1451.5 – Wireless (WiFi, Zigbee, etc)	Done (2007)	st d
1451.6 – CAN Bus	In process	
1451.7 – RFID	In process	

* Needs revision

IEEE 1451.0 (Dot 0) TEDS Format

- □ Required TEDS [Memory block with defined format]
 - MetaTEDS
 - Channel TEDS
 - Calibration TEDS (unless SI units)
 - Xdr-name TEDS
 - Phy TEDS
 - Also optional TEDS
- □ Data Transmission [specific octet format]
 - TEDS/Status requests
 - Triggering and configuration
 - Sensor read commands and data return
 - Actuator write commands and data sending

TEDS Format

□ General format for each TEDS section:

Field	Description	Data Type	Number of Bytes
	TEDS Length	UInt32	4 bytes
1 to N	Data Block	Variable	Variable
	Checksum	Uint16	2 bytes

□ Binary TEDS Tuple format for each data block:

Type-Length-value (TLV)

Example: 01 02 A3 04

Field type is 1, Length is 2 bytes, field value is "A304" hex

□ Field example: Meta-TEDS (TEDS # 1)

13: Number of Implemented Transducer Channels (default=1)

TEDS Compiler

tight ----

CHAN

- 64

Part of Ph. D. thesis of
 Wai Liu
 (Univ. at Buffalo)

Change Dek Channel Sensor T Units Zero/Min Full Scal	sult Value as Desired
Channel Sensor T Units Zero/Min Full Scal	Type Temperature Sens * Colsius *
Units Zero/Min Full Scal	Temperature Sens * Celsius *
Units Zero/Min Full Scal	Celsius -
Zero/Min Full Scal	ninum Value
Full Scal	a Value
OErrorill	
IEEE 1451 TEL	Incertainty 0.1
Chose D	ata Format
ETA TEDS	🕆 Floating Point 👘 Other
TAID TEDS Features	e
CALIBRATION TELIS	t/Multi-Range NO +
NNELID TEDB	
RATION ID TEDS	dyprilles (NO T)
Not Defa	ault Timing No 🔹

TEDS Sections Implemented

- Meta TEDS
- Meta ID TEDS
- Transducer Channel TEDS
- Transducer Channel ID TEDS
- Calibration TEDS
- Calibration ID TEDS
- XdrcName TEDS

Standard Transducer Units (binary format)

SI Based Units

Base Quantity	Name	Unit Symbol
Length	meter	m
Mass	kilogram	kg
Time	second	S
Electric current	ampere	A
Thermodynamic temperature	Kelvin	K
Amount of substance	mole	mol
Luminous intensity	candela	cđ

Field	Description	Data Type	Number of octets
1	Physical units interpretation	UInt8	1
2	(2 * <exponent of="" radians="">) + 128</exponent>	UInt8	1
3	(2 * <exponent of="" steradians="">) + 128</exponent>	UInt8	1
4	(2 * < exponent of meters >) + 128	UInt8	1
5	(2 * <exponent kilograms="" of="">) + 128</exponent>	UInt8	1
6	(2 * <exponent of="" seconds="">) + 128</exponent>	UInt8	1
7	(2 * <exponent amperes="" of="">) + 128</exponent>	UInt8	1
8	(2 * <exponent kelvins="" of="">) + 128</exponent>	UInt8	1
9	(2 * <exponent moles="" of="">) + 128</exponent>	UInt8	1
10	(2 * <exponent candelas="" of="">) + 128</exponent>	UInt8	1

15

Dot 0 Command/Response Structure

	Byte Number	Description
	1	Destination Transducer Channel Number (Most significant byte)
	2	Destination Transducer Channel Number (Least significant byte)
	3	Command Class
-	4	Command Function
	5	Length (Most significant byte)
	6	Length (Least significant byte)
	7-N	Command dependent bytes
ľ	Ν	NCAP Command Message Structure

Byte Number	Description
1	Success/Fail Flag
2	Length (Most significant byte)
3	Length (Least significant byte)
4-N	Reply dependent bytes

TIM Reply Message Structure

Meta-TEDS Writer Screen

University at Buffalo The State University of New York	×	
Access Code 1 META TEDS	-	
Change Default Value as Desired		
Enter ZIPCODE For UUID	14228	
Number of Implemented Transdu	ucer Channels	
	1	
Operational Time-Out (Sec)	1.0	
Slow Access Time-Out (Sec)	1.0	
Self-Test Time (Sec)	1.0	
Using Control/Vector/Proxy Grou	ips No 🔹	
NEXT COPYRIGHT@2005Wei Liu, University at B	uffalo All rights reserved	

Channel/Calibration TEDS (for linear sensors)

ų

	University at Buffalo The State University of New York	×	
	Access Code 3 CHANNEL T	EDS	
	Change Default Value as Desired		
University at Buffalo The State University of Net	Channel		
IEEE 1451 TE	Sensor Type	Temperature Sens	
META TEDS	Units	Celsius	
META ID TEDS	Zero/Mininum Value	0.0	
CHANNEL/CALIBRATION TEDS	Full Scale Value	100.0	
CHANNEL ID TEDS	OError/Uncertainty	0.1	
CALIBRATION ID TEDS	Chose Data Format		
	C Integer • Floating Point	C Other	
**	Features: Self-Test/Multi-Range	NO 🔽	
COP4	Sampling/Buffer	NO 💌	
	Not Default Timing	NO 🔽	
	NEXT		

18

TEDS Reader

IEEE 451 TIM Compliance Tester

TIM (Transducer Interface Module) is most complex and done by sensor design engineers

(TIM tester can be used by the few NCAP designers)

- Tester verifies compliance of a TIM to IEEE 1451.0
 (Dot 0) protocol
- □ Focus is on TEDS checking and data transfer format
- Physical device compliance not checked (part of other standards, e.g. RS485, Bluetooth)
- □ Tester uses serial bus (RS232)
- □ Testing may be done by Internet

Network side (NCAP) options (wired)

Data Readout Examples (via Internet)

Sensor data converted to ASCII for display

🛎 http://192.168.0.68/index.htm?01800180 - Microsoft Internet Explorer 👘 🧾	
File Edit View Favorites Tools Help	1
🚱 Back 🔹 🕥 – 📓 🛃 🏠 🔎 Search 👷 Favorites 🜒 Media	»»
Address 🚳 http://192.168.0.68/index.htm?01800100	Links
EM0402XX01000000001*************************	*
🝘 Done 🛛 🔰 👘 Internet	//.

 TEDS data is displayed in hexadecimal form

Prototype TIM and NCAP

□ NCAP interfaces to Internet via Ethernet

23

Serial Bus Format and Relation to other Networks

- □ Tester uses RS232 serial bus only but...
- □ Interfaces to other physical devices (USB, RS485, Bluetooth, Zigbee,) available.
- **TEDS** retrieval is one feature
- Sensor data read (protocol check) for each channel: *Idle mode* – full scale value of sensor reading (Checked against TEDS, error flag is not correct) *Operating mode* – actual sensor reading (Must be within sensor range)

Wireless Sensors for short-range, unlicensed band

A. Significant power available

line-powered or laptop size battery

B. Medium low power

re-chargeable batteries or shorter life applications

C. Very low power

Long life operation (years)

Wireless sensors – significant power available

- □ Line-powered or laptop sized battery
- □ Uses transceiver
- Depular choice: WiFi (IEEE 802.11b), 2.4 GHz

Components widely available (moderate cost) Good bandwidth

□ Variation of TCP/IP protocol, mostly non-standard

Wireless sensors – medium low power

- □ Re-chargeable battery
- □ Uses transceiver
- □ Popular choices: Bluetooth (IEEE 802.15.1)

Low cost components (production scale) Hard to interface to sensors on prototype scale

Moderate bandwidth

- □ Zigbee (IEEE 802.11.5)
 - Low bandwidth Intermittent communication (sleep mode)

Star or Mesh

Wireless sensors – Very low power

- □ Coin size battery, non-rechargeable, lifetime of years
- □ Transmit only
- D Popular choice: TI/Chipcon (433 MHz and 2.4 GHz)

RF modules and microcontrollers available

Low bandwidth

Intermittent transmission (sleep mode)

Wireless (Dot 5) Options

- IEEE 1451.5 protocols are based on existing wireless protocols used for sensor networking (mostly additions to the OSI Application Layer)
- □ NCAP (gateway) Network (e.g. Internet) format uses Dot 0
- □ Current options are:
 - WiFi (IEEE 802.11)
 - Bluetooth (IEEE 802.15.1)
 - Zigbee (IEEE 802.15.4)
 - 6LoWPAN (IEEE 802.15.4, IPv6)
- □ Named TIM or WTIM (Wireless Transducer Interface Module)
- □ Many options, including TIM to TIM com. via NCAP

Example – Wireless Connection

- □ <u>Wireless modules with RS232 I/O</u> when connected to Dot 2 TIMS are similar to IEEE 1451.5 TIMs (wireless version of IEEE 1451).
- □ Data format and TEDS are the same (both follow the Dot 0 standard)..

Zigbee Mesh Network System

 One of many sensor networks available.

Transducer Electronic Data Sheet Dot 4 TEDS -- TEDS only

- UUID (Universal Unique Identifier)
 Supplied by EEPROM (DS2433) manufacturer (6 bytes)
- □ Basic TEDS (8 bytes)
 - □ Model Number (15 bits)
 - □ Version Letter (5 bits, A-Z)
 - □ Version Number (6 bits)
 - □ Manufacturer ID (14 bits)
 - □ Serial Number (6 bits)
- IEEE Template or Manufacturer's TEDS
 Sensor type and calibration parameters (32 bytes)

Dot 4

Wireless Sensor Example (low cost, long life, short messages)

- □ WS01 wireless temperature (and other) sensors
- □ 433 MHz FSK range 10 to 100 meters, transmit only
- □ SNAP data protocol (header, data, crc)—8 to 12 bytes
- □ Dot 4 TEDS send periodically

RFID with Sensors (Dot 7)

- Combines Radio Frequency IDentification with sensors
- Uses standard (ISO/IEC) RFID communication/format with additional sensor memory section
- □ Sensor format is based in IEEE 1451 protocol
- Typical application is tracking and monitoring perishable shipments (temperature, shock/vibration)

IEEE 1451 as a Universal Digital Sensor Base Format

Specialized networks can handle only a limited number of sensor types or uses non-compact format

-1451 is much superior at the sensor end

- Most applications require individualized displays or graphical user interfaces – 1451 is a fixed format and poorly suited at the user end
- Network oriented applications prefer XML or similar formats which are convenient, but are too verbose at the sensor end
- 1451 at the sensor end (Sensor Fusion level 0) combined with translators is the best solution.

Harmonization of IEEE 1451 with Internet sensor standards

Future Prospects for IEEE 1451

- There has been little interest in previous parts of IEEE 1451 (Dots 2, 1 & 3), except for Dot 4 in certain areas.
- □ The basic Dot 0 (and Dot 5) are more carefully composed and thus likely to be accepted.
- □ The compiler may answer the complexity issue but still implementation of any full-featured standard will be difficult.
- □ The US government may mandate a sensor data standard and the NIST-supported IEEE 1451 is the most recognized candidate.
- The sensor industry, especially the wireless network sector, must recognize the business advantages of a single sensor data standard.

Summary

- □ IEEE 1451.0 (Dot 0) and Dot 5, the key parts of the standard, have recently been adopted.
- Features, advantages and complexity were described
- □ Use of a compiler advocated
- □ Several examples of TIMs and NCAPs given
- □ Sensor harmonization issue mentioned.

Contact: designer@eesensors.com

End

D Backup Slides Follow

www.eesensors.com

Harmonization Meeting Summary (Held at NIST in June, next in Oct)

- □ 25 attendees, mostly government
- DOD, DHS, DJ, DS represented (also NASA subcontractor)
- □ All working under directives to implement standards
- □ DHS new directive requires new sensors to use existing open standards if available (not proprietary or invent new)
- DOD joint task group working on standards and expects to support test bed. Possible FY'10 requirement.
- Several test beds involving IEEE 1451 started (Esensors has some part in all).

Wireless Sensor Networks

- □ Currently fashionable in academic and VC circles
- Recently available low-cost, high performance RF transceiver chips greatly simplify design
- Improvements in embedded microcomputers and smart sensor design also make wireless sensors much more practical now
- □ Can be lower cost and easier to use than wired sensors
- □ Point-to-point and mesh protocols available.
- Specialized sensor networks (e.g. Zigbee) much more efficient for wireless sensors, especially battery operated.
- □ Lack of standards inhibiting growth of industry.

Future of Networked Sensors

- □ Computer-based monitoring and control applications are increasing in commercial, industrial and military sectors.
- Networked, and often wireless, sensors offer performance and cost advantages over traditional methods.
- Wider use of networked sensors is inhibited by lack of standards (especially National scale networks, wireless and multi-vendor, long-term installations).
- I expect sensor standard and harmonization efforts to succeed within 2 to 5 years and Federal Agencies (DHS, DOD; NASA) to favor IEEE 1451.

Dot 4 TEDS Writer and Reader (PC Screens)

Esensors Inc IEEE 1451.4 Minimal NCAP Module TEDS WRITER	Esensors Inc IEEE 1451.4 Minimal NCAP Module TEDS READER
Serial Number [24 BITS] Version Number [6 BITS] Version Letter [5 BITS] Model Number [15 BITS] Manufacturer ID [14 BITS] Tototototototototototototototototototot	Family Code Unique Serial Code CRC 14 22D534010000 B6 BASIC TEDS: SERIAL NO101 VERSION NUMBER1 VERSION LETTERE MODEL NO6 MANUFACTURER ID34
STATUS: 2:15:58 PM Reset Passed Verified Passed ProgrammedPassed TEDS OK failed	STATUS:4 2:51:12 PM RESETPassed TEDS READPassed CRC TESTPassed
CONVERT VERIFY PROGRAM RESET BACK	READ RESET BACK
Writer	at Dieseradienticon Reader 43

retrieval

University at Buffalo The State University of New York	
IEEE 1451 TIM Tester V.1.0	
Query Channel TEDS Analysis: Result: Supported	
Sensor Type: Temperature Sensor	
SI Unit: K	
Low Limit Value: 233	
High Limit Value: 353	
Query Calibration TEDS Analysis: Result: Supported	
Slope Constant Value: 1	
Intercept Constant Value: 273.15	
Sensor Data Value: 26.36719	
Calibrated Sensor Value (In SI Unit): 299.5172	
	×
Operating Mode 🔽 COM 1	
Start Te	st
COPYRIGHT@2006 Darold Wobschall University at	Buffalo