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Abstract— A method of precise time synchronization of wireless 
sensors employing an IEEE 802.15.4 transceiver, and specifically 
employing the 6LoWPAN protocol, was developed. It uses the 
IEEE 1588 synchronization standard and the IEEE 1451.5 Smart 
Transducer Data standard. A Wireless Transducer Interface 
Module (WTIM) was designed and fabricated. It utilizes the 
IEEE 802.15.4 transceiver model TI CC2430 which allows access 
to a hardware sync signal. The difference in timestamps between 
two WTIMs was measured. The results show that the 
synchronization precision is better than 10 µs for short 
synchronization intervals but increases to about 100 µs for longer 
synchronization intervals (1 sec for crystal accuracies of 50ppm). 
The method was tested for 6LoWPAN wireless protocol but 
would apply to other wireless sensors based on the IEEE 802.15.4 
protocols. 
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I. INTRODUCTION 

The timing of sensor data or actuator control in a wireless 
network often is critical to the data acquisition or control 
process. The IEEE 1588 standard describes the time 
synchronization process for wired network nodes, in particular 
using Ethernet, but does not explicitly address how this might 
be extended to wireless networks. Wireless sensors are 
difficult to synchronize because the total transmission time is 
comparatively long and quite variable, especially if re-
transmission and relaying of messages between nodes is 
involved. Also energy and bandwidth restriction limit the 
length and frequency of synchronization messages. The sensor 
(or actuator) data are formatted using the IEEE 1451.0 and 
1451.5 smart transducer standards which provide a standard 
sensor protocol. These standards do not explicitly specify a 
method of synchronizing time clocks between the different 
nodes, or Wireless Transducer Interface Modules (WTIMs), of 
the network and we have combined methods in this research.  

Specific features of this research are (1) synchronization 
pulses are derived from a source close to the physical layer of 
the transceiver without hardware modifications, (2) 
implementation with the Internet-compatible 6LoWPAN 
protocol and (3) a precisely synchronized real time clock 
module with IEEE 1451/1588 format fabricated from 
commercial components. 

 

II. DETAILED DESCRIPTION 

A. Wireless Block Diagram  

 A block diagram of a Wireless Transducer Interface 
Module (WTIM) and an associated gateway or NCAP front 
end is shown in Fig. 1. The gateway also functions as a 
wireless router for the 6LoWPAN network. Both consist of a 
RF transceiver with IEEE 802.15.4 capability, a 
microcontroller (which is integrated with the receiver for our 
system) and a clock module (which here is separate).  
 

 
Figure 1.  Block Diagram of WTIM (left) and NCAP front end or 

gateway/router (right) 

B. IEEE 802.15.4 Transceivers 

The transceiver selected (Fig. 2) is the TI model CC2430 
(2.4 GHz) because it is well suited for the synchronization 
process. In addition to being based on IEEE 802.15.4 protocol, 
two key advantages are access to a hardware synchronization 
signal and the integration of a microcontroller with the 
transceiver in the same chip.  The time synchronization signal 
selected is SFD (start frame delimiter), as shown in Fig. 2. It 
goes high when the initial, required preamble of the message is 
received (or transmitted). The signal is used for an interrupt on 
the microcontroller which then immediately sends a sync signal 
to the clock module. Because the software for this function is 
deterministic (non-branching), and crystal controlled, it has 
little jitter (under 1 µs). The SFD function is similar to the 
beacon signal, which is optional. 

 
Figure 2.  IEEE 802.15.4 Message Timing 

-- The SFD functions as the time sync pulse 



C. Synchronized Clock Module 

The synchronization clock module (Fig. 3) is a small, fast 
microcomputer [17] with a precision oscillator crystal. It is a 
real time clock with the format and features needed for the 
IEEE 1588 standard synchronization. There is one on each 
WTIM and also on the NCAP.  The crystal may be either 
standard (20 to 100 ppm) or precision (1 to 10 ppm). A timer 
within the microcomputer has a resolution equal to the 
oscillator period (0.0625 µs or better). Since our highest target 
synchronization precision is within 1 µs (with rapid updating), 
the timer resolution is a better than required for all of our 
intended applications. 

 

Figure 3.  Synchronized Clock Module 
-- This functions as a real time clock which can be synchronized and 

frequency compensated 

 The time format specified in the IEEE 1451.0 standard is 
the 64-bit TAI format which is the same as PTP except 
without the leap seconds (see below for more details). The 
upper 32 bits is the number of seconds since 1900 (Epoch). 
The lower 32 bits is the number of nanoseconds. It is based on 
Greenwich Mean Time, not local time. TAI is optional for 
IEEE 1588 and it is necessary to convert between it and the 
NTP time format used on the Internet (1900 Epoch with leap 
seconds and binary fractions of a second). Normally this is 
done outside the NCAP (or WTIM).  

The precision required of the timestamp, and thus the 
synchronization precision, depends very much on the 
application. For many wireless applications, including most 
industrial control and monitoring processes, a timestamp 
precision with an error under 1 ms, or perhaps 0.1 ms, is 
sufficient. By contrast wired (Ethernet) networks with IEEE 
1588 protocols are able to provide much closer 
synchronization.  

Synchronization of wireless sensors under 100 µs is a 
challenge because of the round-trip message times are of the 
order of 100 ms and have high variability depending on 
message length and traffic. The RF message itself is about 2-5 
ms but is precisely timed, that is, has little jitter. Our focus 
here is on reliability and low wireless power requirements, in 
particular for manufacturing and monitoring applications, 
rather than on high precision applications which may require 
frequent updates.  

D. Gateway/NCAP/Router 

This unit has three functions: Wireless router, wireless 
gateway and NCAP (Network Capable Application 
Processor), as shown in Fig. 4. The gateway connects the 
wireless devices to the Internet and functions as an NCAP 

which implements the IEEE 1451 protocols. The 
microcontroller implements the IEEE 1451.5 NCAP format 
and communications over the Internet using HTTP protocol 
[17]. 

Another function of the gateway is the router for the 
6LoWPAN network. It manages the traffic between the 
various nodes of the system. 

 
Figure 4.  Block Diagram of NCAP or Gateway with Router 

-- Functions as the wireless network router, IEEE 1451 NCAP and Internet 
Driver 

Still another function of the gateway will be to implement 
the IEEE 1588 precision clock synchronization protocol over 
the Ethernet so that other nodes employing 1588 clocks are 
compatible with the wireless devices 

E. 6LoWPAN Stack Refinements 

The 6LoWPAN Low power Wireless Personal Area 
Network was designed to enable IPv6 Internet-compatible 
datagrams over the lower power and bandwidth IEEE 802.15.4 
radio. In effect the protocol subdivides the verbose IPv6 
messages for efficient transmission over the limited bandwidth 
and message size radio. The protocol is well suited for sensor 
data being interfaced with the Internet. While the protocol 
adds complexity on the RF communication side, it simplifies 
the process from the user point of view.  

The 6LoWPAN stack, although under development for 
several years by various groups, is not yet fully developed. 
Many 6LoWPAN stacks available from proprietary sources 
are unsuitable for implementing the IEEE 1588 
synchronization process but we were able to make the 
software stack from Sensinode [11] operational for our 
WTIM.  

F. Modified IEEE 1588 Time Synchronization Protocol 
The IEEE 1588 Precision Time Synchronization Protocol 

[13] provides a standard method of synchronizing clocks of 
the nodes of networks.  The standard was developed for wired 
networks, specifically Ethernet. Our goal is use the IEEE 1588 
core concepts with wireless networks but realize that it cannot 
be done without modifications for a practical implementation. 
The problems of directly applying the wired standard without 
modification to wireless are: 

• The standard IEEE 1588 synchronization message 
(166 bytes) is too long for IEEE 802.14.4 (128 byte 
limit) which is used for 6LoWPAN (and Zigbee). It 
must be shortened or fragmented. 

• The data rate of wireless is far less than wired (e.g. 
250 kbits/sec for 6LoWPAN and 100 Mbits/sec for 
Ethernet). At least buffering and retiming is required. 



• The computer resources for standard, wired IEEE 
1588 require a large amount of processing power (and 
storage) which is inadvisable for battery-operated 
wireless systems 
 

These problems are discussed in the paper “Precision Time 
Synchronization using Wireless Sensor Networks” by Cho et 
al [18] and other papers describing the HRTS, TPNS and RBS 
protocols [16]. 

The protocol we use is shown in Fig. 5. It is similar to the 
standard IEEE 1588 diagram (Fig. 20) except that the follow-
up transmissions are optional since there is a fixed time 
between the sync message initialization time T1’ and T1, as 
well as T3’ and T3. It also can be compared with Fig. 6 of Cho 
et al [18] where several fragmented messages are sent 
wirelessly rather a single message which we send 

 
Figure 5. Time Synchronization between Master (NCAP/gateway) and Slave 

(WTIM) 

The primary differences between the wired and wireless 
versions of IEEE 1588 are: 

• The on-the-air sync message is abbreviated (required 
for IEEE 802.15.4 unless message is fragmented, 
requiring more power). 

• Follow-up messages are normally not used for the 
modified version (but are with the full-format version) 
because the time between the sync message 
initialization and sync time are fixed, known quantities 
(saves power and precision not affected). 

We believe that the on-the-air message format is not 
critical to whether the protocol can be properly termed “IEEE 
1588 protocol” but rather that {1} the procedure must adhere 
to the core method of 1588 which involves determining and 
compensating the clocks offset and transmission delay times, 
{2} there must be conformity to the 1588 format on the 
network (Ethernet) side, and, of course, {3} it must provide 
precision clock synchronization. It may be possible to extend 
the IEEE 1588 standard to include wireless in the future  

 
Full IEEE 1588 Protocol Option 
A version of the wireless IEEE 1588 protocol which uses 

the full IEEE message (fragmented transmission) and the 

follow-up messages (Fig. 5) is available. The differences in 
timing precision and power consumption are discussed.   

G. IEEE 1451.5 Protocols and Formats 

The IEEE 1451.5 (Dot 5) smart transducer was partially 
implemented based on the IEEE 1451.0 (Dot 0) standard [4]. 
Dot 0 specifies the TEDS (Transducer Electronic Data Sheet, 
located in the WTIM) sensor, commands and data structure in 
detail, but without reference to the specific physical layer of 
the network or digital interface. Dot 5 adds the physical layer 
for several (currently 4) wireless sensor networks, including 
6LoWPAN. The 1451 protocol is implemented at the 
application layer and does not directly affect the 1588 
synchronization process which occurs at the MAC layer.  

III.  RESULTS 

As shown in Fig. 6, the clock error is dependent on the 
WTIM to NCAP crystal frequency differences and increases 
linearly with the time after the synchronization pulse is 
applied. Note that the intercept and jitter are under 1 µs 
suggesting that with frequent updates a precision of 1 µs may 
be achieved. Since the drift is predictable from one sync 
interval to another, we expect that it can be compensated to a 
high degree (10x to 100x better).  Software method for 
correcting the internal clock frequency resulted in significantly 
improving the time clock precision whether standard or 
precision crystals are used. 
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Figure 6.  Timing Error (µs) vs. Sync Update Interval 

-- Clocks on WTIMs drift apart after sync due to small crystal frequency 
inaccuracies 

IV.  CONCLUSIONS 

Each time sync update requires battery power and therefore 
battery power requirements are minimized by increasing the 
update intervals.  The WTIM transceiver and microcontroller 
must be kept in a sleep mode except for brief, timed intervals 
(when the beacon or sync pulse, SFD, is sent). We prefer 10 to 
100 second intervals and the precision of the WTIM clock 
permits theses long intervals.  

As pointed out above, there is a trade-off between power 
consumption and synchronization precision. As is, without the 
frequency compensation, the drift due to crystal frequency 
inaccuracy requires frequent sync updates. An update rate 
which is 100x faster will result in a 100 x more precise 
timestamp.   
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