
Extended Abstract (ISPCS)

Synchronization of Wireless Sensor Networks
Using a Modified IEEE 1588 Protocol

Yuan Ma/Darold Wobschall
Amherst, USA
Esensors, Inc.

Abstract— A method of precise time synchronization of wireless
sensors employing an IEEE 802.15.4 transceiver, and specifically
employing the 6LoWPAN protocol, was developed. It uses the
IEEE 1588 synchronization standard and the IEEE 1451.5 Smart
Transducer Data standard. A Wireless Transducer Interface
Module (WTIM) was designed and fabricated. It utilizes the
IEEE 802.15.4 transceiver model TI CC2430 which allows access
to a hardware sync signal. The difference in timestamps between
two WTIMs was measured. The results show that the
synchronization precision is better than 10 µs for short
synchronization intervals but increases to about 100 µs for longer
synchronization intervals (1 sec for crystal accuracies of 50ppm).
The method was tested for 6LoWPAN wireless protocol but
would apply to other wireless sensors based on the IEEE 802.15.4
protocols.

Keywords-1588; 1451; wireless sensor network; synchronization

I. INTRODUCTION

The timing of sensor data or actuator control in a wireless
network often is critical to the data acquisition or control
process. The IEEE 1588 standard describes the time
synchronization process for wired network nodes, in particular
using Ethernet, but does not explicitly address how this might
be extended to wireless networks. Wireless sensors are
difficult to synchronize because the total transmission time is
comparatively long and quite variable, especially if re-
transmission and relaying of messages between nodes is
involved. Also energy and bandwidth restriction limit the
length and frequency of synchronization messages. The sensor
(or actuator) data are formatted using the IEEE 1451.0 and
1451.5 smart transducer standards which provide a standard
sensor protocol. These standards do not explicitly specify a
method of synchronizing time clocks between the different
nodes, or Wireless Transducer Interface Modules (WTIMs), of
the network and we have combined methods in this research.

Specific features of this research are (1) synchronization
pulses are derived from a source close to the physical layer of
the transceiver without hardware modifications, (2)
implementation with the Internet-compatible 6LoWPAN
protocol and (3) a precisely synchronized real time clock
module with IEEE 1451/1588 format fabricated from
commercial components.

II. DETAILED DESCRIPTION

A. Wireless Block Diagram

 A block diagram of a Wireless Transducer Interface
Module (WTIM) and an associated gateway or NCAP front
end is shown in Fig. 1. The gateway also functions as a
wireless router for the 6LoWPAN network. Both consist of a
RF transceiver with IEEE 802.15.4 capability, a
microcontroller (which is integrated with the receiver for our
system) and a clock module (which here is separate).

Figure 1. Block Diagram of WTIM (left) and NCAP front end or

gateway/router (right)

B. IEEE 802.15.4 Transceivers

The transceiver selected (Fig. 2) is the TI model CC2430
(2.4 GHz) because it is well suited for the synchronization
process. In addition to being based on IEEE 802.15.4 protocol,
two key advantages are access to a hardware synchronization
signal and the integration of a microcontroller with the
transceiver in the same chip. The time synchronization signal
selected is SFD (start frame delimiter), as shown in Fig. 2. It
goes high when the initial, required preamble of the message is
received (or transmitted). The signal is used for an interrupt on
the microcontroller which then immediately sends a sync signal
to the clock module. Because the software for this function is
deterministic (non-branching), and crystal controlled, it has
little jitter (under 1 µs). The SFD function is similar to the
beacon signal, which is optional.

Figure 2. IEEE 802.15.4 Message Timing

-- The SFD functions as the time sync pulse

C. Synchronized Clock Module

The synchronization clock module (Fig. 3) is a small, fast
microcomputer [17] with a precision oscillator crystal. It is a
real time clock with the format and features needed for the
IEEE 1588 standard synchronization. There is one on each
WTIM and also on the NCAP. The crystal may be either
standard (20 to 100 ppm) or precision (1 to 10 ppm). A timer
within the microcomputer has a resolution equal to the
oscillator period (0.0625 µs or better). Since our highest target
synchronization precision is within 1 µs (with rapid updating),
the timer resolution is a better than required for all of our
intended applications.

Figure 3. Synchronized Clock Module
-- This functions as a real time clock which can be synchronized and

frequency compensated

 The time format specified in the IEEE 1451.0 standard is
the 64-bit TAI format which is the same as PTP except
without the leap seconds (see below for more details). The
upper 32 bits is the number of seconds since 1900 (Epoch).
The lower 32 bits is the number of nanoseconds. It is based on
Greenwich Mean Time, not local time. TAI is optional for
IEEE 1588 and it is necessary to convert between it and the
NTP time format used on the Internet (1900 Epoch with leap
seconds and binary fractions of a second). Normally this is
done outside the NCAP (or WTIM).

The precision required of the timestamp, and thus the
synchronization precision, depends very much on the
application. For many wireless applications, including most
industrial control and monitoring processes, a timestamp
precision with an error under 1 ms, or perhaps 0.1 ms, is
sufficient. By contrast wired (Ethernet) networks with IEEE
1588 protocols are able to provide much closer
synchronization.

Synchronization of wireless sensors under 100 µs is a
challenge because of the round-trip message times are of the
order of 100 ms and have high variability depending on
message length and traffic. The RF message itself is about 2-5
ms but is precisely timed, that is, has little jitter. Our focus
here is on reliability and low wireless power requirements, in
particular for manufacturing and monitoring applications,
rather than on high precision applications which may require
frequent updates.

D. Gateway/NCAP/Router

This unit has three functions: Wireless router, wireless
gateway and NCAP (Network Capable Application
Processor), as shown in Fig. 4. The gateway connects the
wireless devices to the Internet and functions as an NCAP

which implements the IEEE 1451 protocols. The
microcontroller implements the IEEE 1451.5 NCAP format
and communications over the Internet using HTTP protocol
[17].

Another function of the gateway is the router for the
6LoWPAN network. It manages the traffic between the
various nodes of the system.

Figure 4. Block Diagram of NCAP or Gateway with Router

-- Functions as the wireless network router, IEEE 1451 NCAP and Internet
Driver

Still another function of the gateway will be to implement
the IEEE 1588 precision clock synchronization protocol over
the Ethernet so that other nodes employing 1588 clocks are
compatible with the wireless devices

E. 6LoWPAN Stack Refinements

The 6LoWPAN Low power Wireless Personal Area
Network was designed to enable IPv6 Internet-compatible
datagrams over the lower power and bandwidth IEEE 802.15.4
radio. In effect the protocol subdivides the verbose IPv6
messages for efficient transmission over the limited bandwidth
and message size radio. The protocol is well suited for sensor
data being interfaced with the Internet. While the protocol
adds complexity on the RF communication side, it simplifies
the process from the user point of view.

The 6LoWPAN stack, although under development for
several years by various groups, is not yet fully developed.
Many 6LoWPAN stacks available from proprietary sources
are unsuitable for implementing the IEEE 1588
synchronization process but we were able to make the
software stack from Sensinode [11] operational for our
WTIM.

F. Modified IEEE 1588 Time Synchronization Protocol
The IEEE 1588 Precision Time Synchronization Protocol

[13] provides a standard method of synchronizing clocks of
the nodes of networks. The standard was developed for wired
networks, specifically Ethernet. Our goal is use the IEEE 1588
core concepts with wireless networks but realize that it cannot
be done without modifications for a practical implementation.
The problems of directly applying the wired standard without
modification to wireless are:

• The standard IEEE 1588 synchronization message
(166 bytes) is too long for IEEE 802.14.4 (128 byte
limit) which is used for 6LoWPAN (and Zigbee). It
must be shortened or fragmented.

• The data rate of wireless is far less than wired (e.g.
250 kbits/sec for 6LoWPAN and 100 Mbits/sec for
Ethernet). At least buffering and retiming is required.

• The computer resources for standard, wired IEEE
1588 require a large amount of processing power (and
storage) which is inadvisable for battery-operated
wireless systems

These problems are discussed in the paper “Precision Time
Synchronization using Wireless Sensor Networks” by Cho et
al [18] and other papers describing the HRTS, TPNS and RBS
protocols [16].

The protocol we use is shown in Fig. 5. It is similar to the
standard IEEE 1588 diagram (Fig. 20) except that the follow-
up transmissions are optional since there is a fixed time
between the sync message initialization time T1’ and T1, as
well as T3’ and T3. It also can be compared with Fig. 6 of Cho
et al [18] where several fragmented messages are sent
wirelessly rather a single message which we send

Figure 5. Time Synchronization between Master (NCAP/gateway) and Slave

(WTIM)

The primary differences between the wired and wireless
versions of IEEE 1588 are:

• The on-the-air sync message is abbreviated (required
for IEEE 802.15.4 unless message is fragmented,
requiring more power).

• Follow-up messages are normally not used for the
modified version (but are with the full-format version)
because the time between the sync message
initialization and sync time are fixed, known quantities
(saves power and precision not affected).

We believe that the on-the-air message format is not
critical to whether the protocol can be properly termed “IEEE
1588 protocol” but rather that {1} the procedure must adhere
to the core method of 1588 which involves determining and
compensating the clocks offset and transmission delay times,
{2} there must be conformity to the 1588 format on the
network (Ethernet) side, and, of course, {3} it must provide
precision clock synchronization. It may be possible to extend
the IEEE 1588 standard to include wireless in the future

Full IEEE 1588 Protocol Option
A version of the wireless IEEE 1588 protocol which uses

the full IEEE message (fragmented transmission) and the

follow-up messages (Fig. 5) is available. The differences in
timing precision and power consumption are discussed.

G. IEEE 1451.5 Protocols and Formats

The IEEE 1451.5 (Dot 5) smart transducer was partially
implemented based on the IEEE 1451.0 (Dot 0) standard [4].
Dot 0 specifies the TEDS (Transducer Electronic Data Sheet,
located in the WTIM) sensor, commands and data structure in
detail, but without reference to the specific physical layer of
the network or digital interface. Dot 5 adds the physical layer
for several (currently 4) wireless sensor networks, including
6LoWPAN. The 1451 protocol is implemented at the
application layer and does not directly affect the 1588
synchronization process which occurs at the MAC layer.

III. RESULTS

As shown in Fig. 6, the clock error is dependent on the
WTIM to NCAP crystal frequency differences and increases
linearly with the time after the synchronization pulse is
applied. Note that the intercept and jitter are under 1 µs
suggesting that with frequent updates a precision of 1 µs may
be achieved. Since the drift is predictable from one sync
interval to another, we expect that it can be compensated to a
high degree (10x to 100x better). Software method for
correcting the internal clock frequency resulted in significantly
improving the time clock precision whether standard or
precision crystals are used.

-10

0

10

20

30

40

50

60

0 2 4 6 8 10 12

Update Interval (sec)

C
lo

ck
 E

rr
o

r
(u

s)
.

WTIM#1

WTM#2

Figure 6. Timing Error (µs) vs. Sync Update Interval

-- Clocks on WTIMs drift apart after sync due to small crystal frequency
inaccuracies

IV. CONCLUSIONS

Each time sync update requires battery power and therefore
battery power requirements are minimized by increasing the
update intervals. The WTIM transceiver and microcontroller
must be kept in a sleep mode except for brief, timed intervals
(when the beacon or sync pulse, SFD, is sent). We prefer 10 to
100 second intervals and the precision of the WTIM clock
permits theses long intervals.

As pointed out above, there is a trade-off between power
consumption and synchronization precision. As is, without the
frequency compensation, the drift due to crystal frequency
inaccuracy requires frequent sync updates. An update rate
which is 100x faster will result in a 100 x more precise
timestamp.

REFERENCES
[1] IEEE 1451.0-2007, Standard for a Smart Transducer Interface for

Sensors and Actuators–Common Functions, Communication Protocols,
and Transducer Electronic Data Sheet (TEDS) Formats. Copy can be
obtained from Ref. 4.

[2] IEEE 1451.5-2007, Standard for a Smart Transducer Interface for
Sensors and Actuators–Wireless Communication and Transducer
Electronic Data Sheet (TEDS) Formats. Copy can be obtained from Ref.
4.

[3] IEEE 1588-2008, Standard for a Precision Clock Synchronization
Protocol for Networked Measurement and Control Systems. Copy can be
obtained from Ref. 4.

[4] IEEE 1451: K. Lee and M. Reichardt “Open Standards for Homeland
Security Sensor Networks”, IEEE Instrumentation and Measurement
Magazine, Dec. 2005

[5] D. Wobschall, “Network Sensor Monitoring using the Universal IEEE
1451 Standard”, IEEE I and M, Vol. 11, p 18 (2008).

[6] Time sync protocol:
http://www.cs.tut.fi/~markoh/projektityo/www/synkronisation_1/prestud
y.htm

[7] NIST time formats: http://www.boulder.nist.gov/timefreq/service/its.htm
[8] Time conversion routines:

http://www.perl.com/cs/user/query/q/6?id_topic=73
[9] Sensors mag IEEE 1588:

http://www.sensorsmag.com/articles/1102/26/main.shtml

[10] IEEE 802,15.4 http://www.amazon.com/802-15-4-Low-Rate-Wireless-
Personal-Networks/dp/0738135577

[11] FREERTOS: http://www.freertos.org
[12] Jeremy, E., G. Lewis, and E. Deborah, Fine-grained network time

synchronization using reference broadcasts, in Proceedings of the 5th
symposium on Operating systems design and implementation. 2002,
ACM: Boston, Massachusetts

[13] Mikl, et al., The flooding time synchronization protocol, in Proceedings
of the 2nd international conference on Embedded networked sensor
systems. 2004, ACM: Baltimore, MD, USA

[14] Ping, S. (2003) Delay Measurement Time Synchronization for Wireless
Sensor Networks

[15] Saurabh Ganeriwal, R.K., Mani B. Srivastava, Timing-sync protocol for
sensor networks, in Proceedings of the 1st international conference on
Embedded networked sensor systems. 2003, ACM: Los Angeles,
California, USA

[16] Han, H.D.a.R., Tsync: A lightweight bidirectional time synchronization
service for wireless sensor networks. ACM SIGMOBILE Mobile
Computing and Communications Review, 1994. 8: p. 125--139

[17] TI. CC2430 Datasheet: A True System-on-Chip solution for 2.4 GHz
IEEE 802.15.4 / ZigBee(TM) (Rev. F). 2007

[18] Wireless time sync reference, H. Cho, S. Son and Y. Baek
“Implementation of a Precision Time Protocol over a Low Rate Wireless
Personal Area Networks” IEEE Computer Systems Architecture
Conference, 2008. ACSAC 2008. 13th Asia-Pacific.

