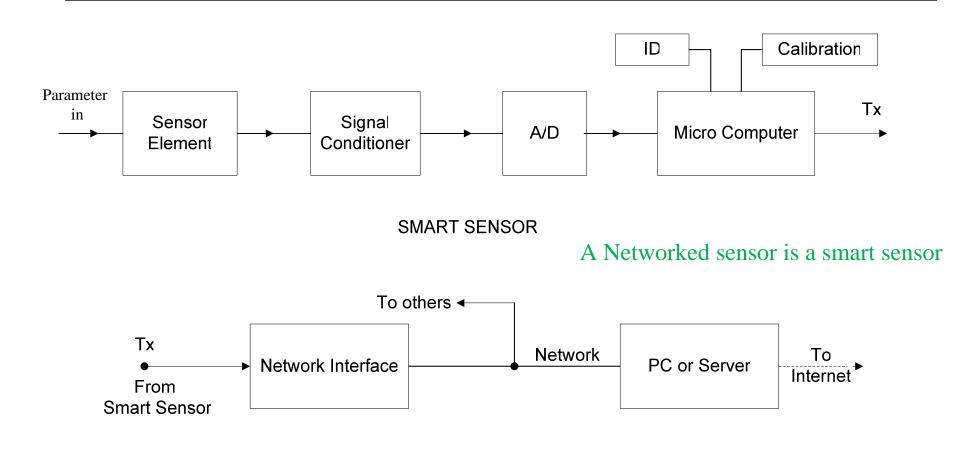
IEEE 1451 Smart Transducer Standard for HVAC Applications

Darold Wobschall, Ph. D. Esensors Inc. Amherst NY

Agenda

Part A

Describe the IEEE 1451 transducer standard


Part B

 Discuss application of standard to HVAC applications.

Part A

- Describe smart transducers/sensors
- Discuss sensor networks, both wired and wireless
- □ Introduce the IEEE 1451 transducer standard

Networked Sensor Block Diagram

Networked Transducer Features and Applications

<u>Features</u>

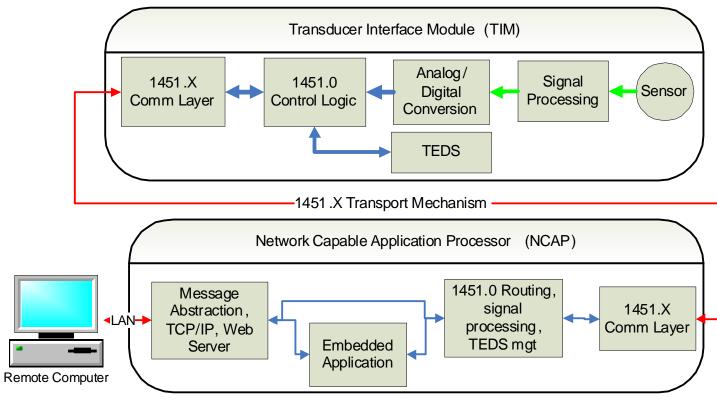
- □ Plug and play
- □ Multiple sensors on one network or bus

Applications

- Monitoring and Control
- Automatic testing
- □ Machine to Machine (M2M) sensor data communications
- □ Wide area (Nationwide) data collection

Sensor/Transducer Networks

- A network connects more than one addressed sensor (or actuator) to a digital wired or wireless network
- Both network and sensor digital data protocols are needed
- Standard data networks can be used but are far from optimum
- Numerous (>100) incompatible sensor networks are currently in use – each speaking a different language

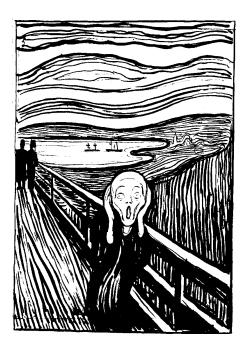


The Tower of Babel

IEEE 1451 – the Universal Transducer Language

- □ Problem: too many network protocols in common use
- Narrow solutions and borrowed protocols have not worked
- Sensor engineers in the fragmented sensor industry need a simple method of implementation
- □ *How can it be done?*
- □ We need something like USB, except for sensors
- □ Solution: the IEEE 1451 Smart Transducer Protocol open standard is the best universal solution
- □ Supported by NIST, IEEE and many Federal agencies

A review of the IEEE 1451 Smart Transducer Concept



IEEE 1451 Advantages

- □ Comprehensive enough to cover nearly all sensors and actuators in use today (not 20/80% approach)
- Many operating modes
 (buffered, no-buffer, grouped sensors, timestamps, timed data, streaming ...)
- □ Extensive units, linearization and calibration options
- □ Multiple timing and data block size constraints handled.
- □ Compatible with most wired and wireless sensor buses and networks (point-to-point, mesh, TIM-to-TIM, mixed networks).
- □ Efficient binary protocol (especially suitable for wireless)
- □ Standard is 400+ pages for basic part, over 1500 page total

But the Complexity!

- A comprehensive standard is necessarily complex
- There was little adoption of the original IEEE 1451.2 (TII) standard because of its perceived complexity
- Manual preparation of the TEDS is not practical -- A TEDS compiler is needed
- A compliance test procedure is also desirable to prove that a design is correct

Munch – The scream

Status of Various Parts of IEEE 1451

1451.0 – Basic data/TEDS format	Done (2007)
1451.1 – NCAP/Computer Interface	Done (1999)*
1451.2 – RS-232	Done (1997)*
1451.3 – Wired Multi-drop	Done (2002)*
1451.4 – TEDS Only	Done (2005)
1451.5 – Wireless (WiFi, Zigbee, etc)	Done (2007) Described in
1451.7 – RFID	Being ratified next paper
* Nee	ds revision

IEEE 1451.0 (Dot 0) TEDS Format

- □ Required TEDS [Memory block with defined format]
 - MetaTEDS
 - Channel TEDS
 - Calibration TEDS (unless SI units)
 - Xdr-name TEDS
 - Phy TEDS
 - Also optional TEDS
- □ Data Transmission [specific octet format]
 - TEDS/Status requests
 - Triggering and configuration
 - Sensor read commands and data return
 - Actuator write commands and data sending

TEDS Format

□ General format for each TEDS section (except Dot 4):

Field	Description	Data Type	Number of Bytes
	TEDS Length	UInt32	4 bytes
1 to N	Data Block	Variable	Variable
	Checksum	Uint16	2 bytes

□ Binary TEDS Tuple format for each data block:

Type-Length-value (TLV)

Example: 01 02 A3 04

Field type is 1, Length is 2 bytes, field value is "A304" hex

□ Field example: Meta-TEDS (TEDS # 1)

13: Number of Implemented Transducer Channels (default=1) IEEE 1451 for HVAC

Standard Transducer Units (binary format)

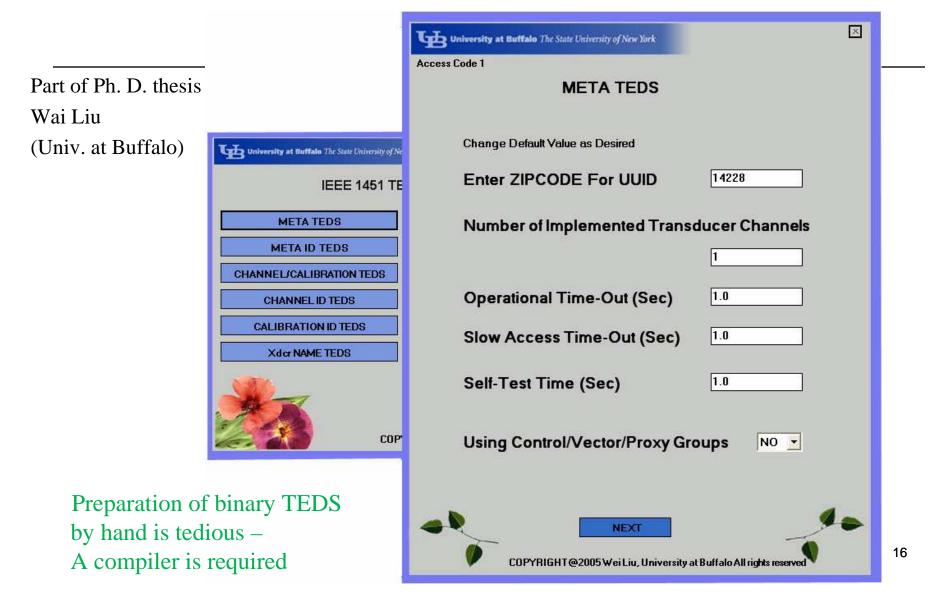
SI Based Units

Base Quantity	Name	Unit Symbol	
Length	meter	m	
Mass	kilogram	kg	
Time	second	S	
Electric current	ampere	A	
Thermodynamic temperature	Kelvin	K	
Amount of substance	mole	mol	
Luminous intensity	candela	cđ	

Field	Description	Data Type	Number of octets
1	Physical units interpretation	UInt8	1
2	(2 * <exponent of="" radians="">) + 128</exponent>	UInt8	1
3	(2 * <exponent of="" steradians="">) + 128</exponent>	UInt8	1
4	(2 * <exponent meters="" of="">) + 128</exponent>	UInt8	1
5	(2 * <exponent kilograms="" of="">) + 128</exponent>	UInt8	1
6	(2 * <exponent of="" seconds="">) + 128</exponent>	UInt8	1
7	(2 * <exponent amperes="" of="">) + 128</exponent>	UInt8	1
8	(2 * <exponent kelvins="" of="">) + 128</exponent>	UInt8	1
9	(2 * <exponent moles="" of="">) + 128</exponent>	UInt8	1
10	(2 * <exponent candelas="" of="">) + 128</exponent>	UInt8	1

14

Dot 0 Command/Response Header

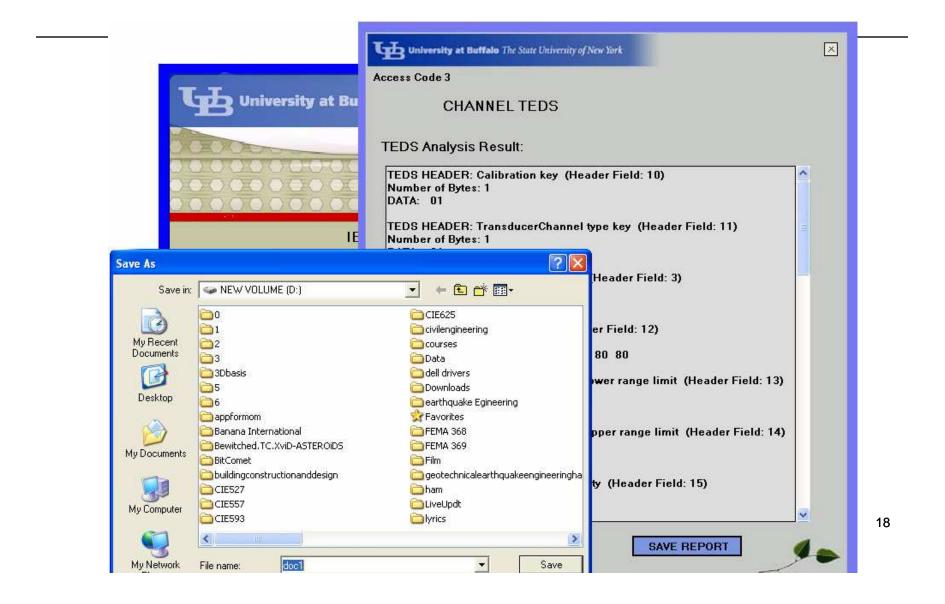

Byte Number	er Description			
1	Destination Transducer Channel Number (Most significant byte)			
2	Destination Transducer Channel Number (Least significant byte)			
3	Command Class			
4	Command Function			
5	Length (Most significant byte)			
6	Length (Least significant byte)			
7-N	Command dependent bytes			

NCAP Command Message Structure

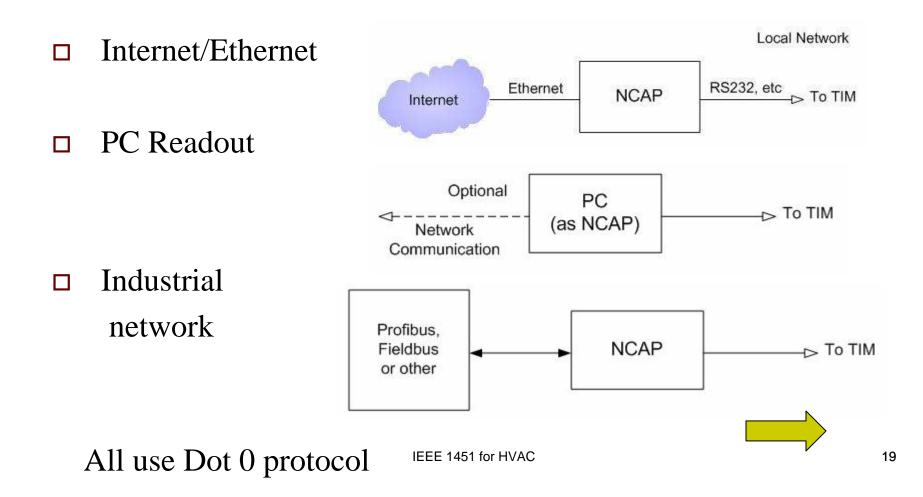
Byte Number	Description
1	Success/Fail Flag
2	Length (Most significant byte)
3	Length (Least significant byte)
4-N	Reply dependent bytes

TIM Reply Message Structure

TEDS Compiler (Meta-TEDS section)

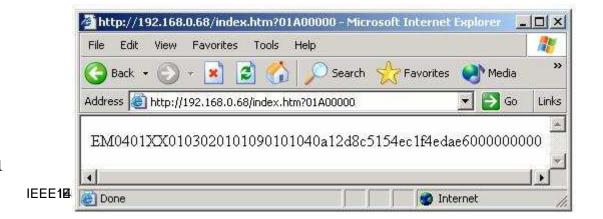


Channel/Calibration TEDS (for linear sensors)


G

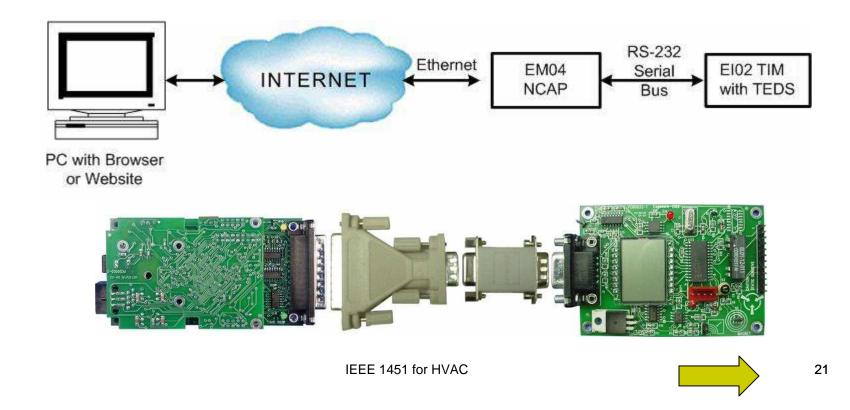
	University at Buffalo The State University of New York	×	
	Access Code 3 CHANNEL T	EDS	
	Change Default Value as Desired		
B University at Buffalo The State University of Net	Channel	1	
IEEE 1451 TE	Sensor Type	Temperature Sens	
META TEDS	Units	Celsius	
META ID TEDS	Zero/Mininum Value	0.0	
CHANNEL/CALIBRATION TEDS	Full Scale Value	100.0	
CHANNEL ID TEDS	OError/Uncertainty	0.1	
CALIBRATION ID TEDS	Chose Data Format		
	C Integer • Floating Point	C Other	
**	Features: Self-Test/Multi-Range	NO 💌	
COP4	Sampling/Buffer	NO 🔽	
	Not Default Timing	NO 💌	
		4.0	1
	NEXT		

TEDS Reader


Network side (NCAP) options (wired)

Data Readout Examples (HTTP via Internet)

 Sensor data converted to ASCII for display


🛃 http://192.168.0.68/index.htm?01800180 - Microsoft Internet Explorer 👘 📃	
File Edit View Favorites Tools Help	
🚱 Back 🔹 💮 👻 📓 🐔 🔎 Search 👷 Favorites 📢 Media	»
Address 🚳 http://192.168.0.68/index.htm?01800100	Links
EM0402XX01000000001*************************	**
🕑 Done 🛛 👘 🚺 👘 Internét	11.

 TEDS data is displayed in hexadecimal form

Prototype TIM and NCAP

□ NCAP interfaces to Internet via Ethernet

Serial Bus Format and Relation to other Networks

- □ Tester uses RS232 serial bus only but...
- □ Interfaces to other physical devices (USB, RS485, Bluetooth, Zigbee,) available.
- □ TEDS retrieval is one feature
- Sensor data read (protocol check) for each channel: *Idle mode* – full scale value of sensor reading (Checked against TEDS, error flag is not correct) *Operating mode* – actual sensor reading (Must be within sensor range)

Wireless Sensors for short-range, unlicensed band

Classes of wireless sensors

A. Significant power available

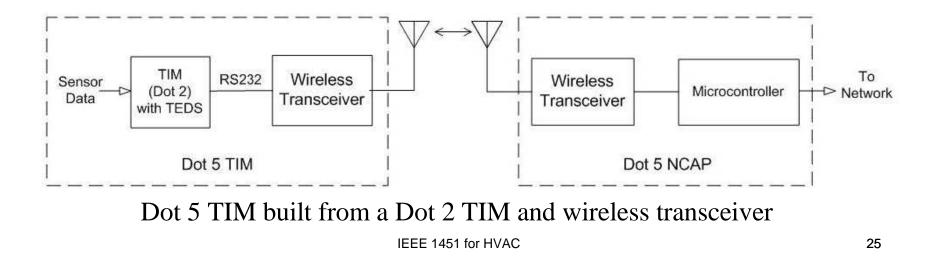
line-powered or laptop size battery

B. Medium low power

re-chargeable batteries or shorter life applications

C. Very low power

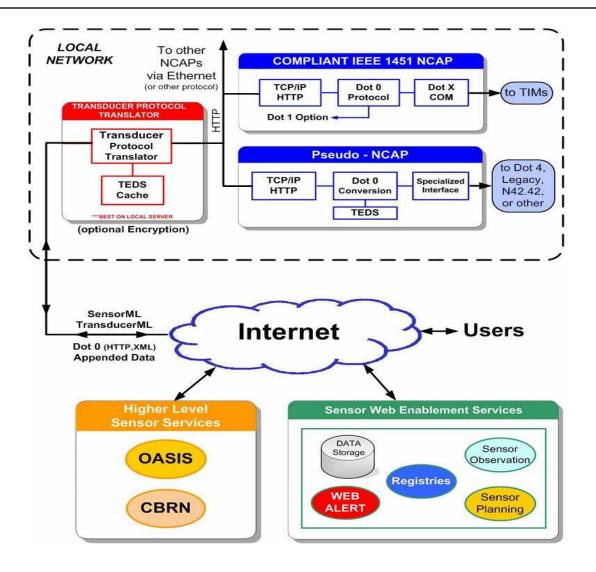
Long life operation (years)


Wireless (Dot 5) Options

- IEEE 1451.5 protocols are based on existing wireless protocols used for sensor networking (mostly additions to the OSI Application Layer)
- □ NCAP (gateway) Network (e.g. Internet) format uses Dot 0
- □ Current options are:
 - WiFi (IEEE 802.11)
 - Bluetooth (IEEE 802.15.1)
 - Zigbee (IEEE 802.15.4)
 - 6LoWPAN (IEEE 802.15.4, IPv6)
- □ Named TIM or WTIM (Wireless Transducer Interface Module)
- □ Many options, including TIM to TIM com. via NCAP

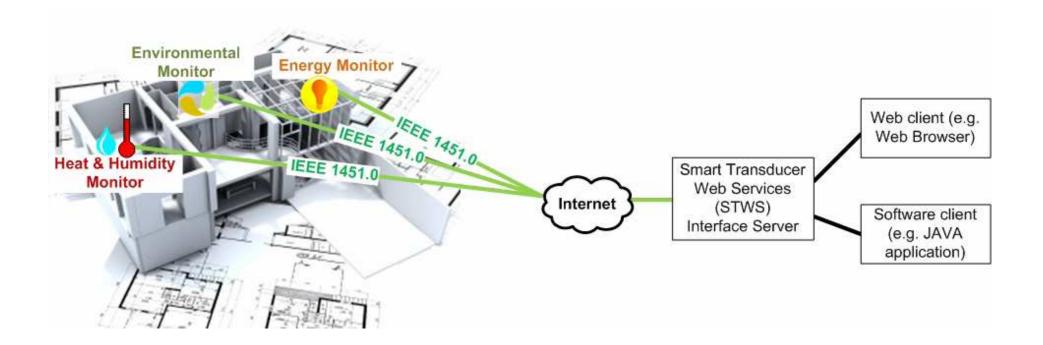
IEEE 126 E States d and HD & A C iption

Example – Wireless Connection


- □ <u>Wireless modules with RS232 I/O</u> when connected to Dot 2 TIMS are similar to IEEE 1451.5 TIMs (wireless version of IEEE 1451).
- □ Data format and TEDS are the same (both follow the Dot 0 standard)..

RFID with Sensors (Dot 7)

- Combines Radio Frequency IDentification with sensors
- Uses standard (ISO/IEC) RFID communication/format with additional sensor memory section
- □ Sensor format is based in IEEE 1451 protocol
- Typical application is tracking and monitoring perishable shipments (temperature, shock/vibration)


Harmonization of IEEE 1451 with Internet sensor standards

Part B

Applications of the IEEE 1451 smart transducer standard to HVAC

Organization of HVAC Transducers

HVAC sensor with Internet Address

- □ Uses Ethernet as the Network
- □ Microcontroller has TCP/IP (mini-website) as protocol
- □ Data (temp/hum/light) can be read anywhere on Internet
- Polling/logging/display by remote websites
- This version is a smart sensor but does <u>not</u> have a IEEE 1451 standard interface

Data readout (typical of digital sensor displays)

Edit View Favorites T	ools Help					
) Back 🔹 🕥 🕤 🚺 🔮	🕯 🏠 🔎	Search 쑭 Favori	es 💽 Med	la		
ress 🕘 http://192.168.254.1/	nagios/index.html					💌 🋃 Go 🛛 Li
~	websensor1	Humidity	OK	08-30-2004 11:16:04 Od Oh 16m 37s	1/3	OK: temp: 87.7 F, humidity: 44.5%, illumination: 275.3
Nagios	0	Illumination	CRITICAL	08-30-2004 11:14:28 0d 0h 18m 18s	3 <i>1</i> 3	CRITICAL: temp: 87.7 F, humidity: 43.7%, illumination: 275.3
		TEMPERATURE	OK .	08-30-2004 11:16:15 Od Oh 16m 28s	1/3	OK: temp: 87.7 F, humidity: 45.1%, illumination: 275.3
neral	websensor2	Humidity	<u>ÖK</u>	08-30-2004 11:16:04 Od Oh 16m 37s	1/3	OK: temp: 79.0 F, humidity: 57.7%, illumination: 240.4
ome ocumentation		llumination	CRITICAL	08-30-2004 11:16:04 Od Oh 16m 38s	3/3	CRITICAL: temp: 79.0 F, humidity: 57.4%, illumination: 240.4
onitoring		TEMPERATURE	OK	08-30-2004 11:16:15 Od Oh 16m 28s	1/3	OK: temp: 79.0 F, humidity: 58.3%, illumination: 240.4
actical Overview	websensor3	Humidity	OK	08-30-2004 11:16:04 Od Oh 16m 37s	1/3	OK: temp: 76.2 F, humidity: 60.8%, illumination: 78.3
ervice Detail ost Detail		Illumination	CRITICAL	08-30-2004 11:17:16 0d 0h 15m 28s	3/3	CRITICAL: temp: 76.2 F, humidity: 63.7%, illumination: 78.3
tatus Overview		TEMPERATURE	OK	08-30-2004 11:16:15 Od Oh 16m 28s	1/3	OK: temp: 76.2 F, humidity: 62.2%, illumination: 78.3
tatus Summary	websensor4	Humidity	OK	08-30-2004 11:17:28 Od Oh 19m 57s	1/3	OK: temp: 81.7 F, humidity: 52.8%, illumination: 71.8
itatus Grid itatus Map		Illumination	CRITICAL	08-30-2004 11:16:04 Od Oh 16m 37s	3/3	CRITICAL: temp: 81.6 F, humidity: 50.8%, illumination: 71.8
-D Status Map		TEMPERATURE	OK	08-30-2004 11:16:15 Od Oh 16m 28s	1/3	OK: temp: 81.6 F, humidity: 51.6%, illumination: 72.9
otifications				32 Matching Service Entries	Displayed	

Uses standard web browser (HTTP)

Conversion to IEEE 1451.0 (Dot 0) Format

- Start with networked (Ethernet compatible) smart sensor -Combined TIM and NCAP
- □ Add TEDS
- □ Add HTTP Dot 0 commands interpretation
- □ Respond with data in Dot 0 format using HTTP
- Requires website which understands and displays
 Dot 0 format data
- □ Implement plug and play

TEDS (Dot 0) for HVAC Smart Sensor

- □ Meta-TEDS (for ID and overall configuration)
- □ Chan 1 (time) TEDS -- optional, but recommended
- □ Chan 2 (temperature) TEDS (+ calib TEDS)
- □ Chan 3 (humidity) TEDS (+ calib TEDS)
- □ Chan 2 (illumination) TEDS (+ calib TEDS)
- □ XdrcName TEDS Name (e.g. furnace room) given by user
- □ GeoLoc (Location) TEDS -- optional

Dot 0 Commands for HVAC Sensor -- TEDS Related

- □ Tim Discovery --to see what is available
- □ Transducer discovery to see what is available
- □ Read TEDS (read individually)
- □ Read Name TEDS
- □ Read Location TEDS (if available)
- □ Read Data (each channel individually or as a group
- □ Other commands available but not implemented here

STWS vs HTTP direct

- Smart Transducer Web Services translates Dot 0 commands and data via HTTP into network friendly SOAP (Simple Object Access Protocol).
- STWS was developed at NIST (sponsor of 1451 protocol) it is a version of the Dot 1 protocol which implements plug and play

Contact: designer@eesensors.com

STWS Website

36

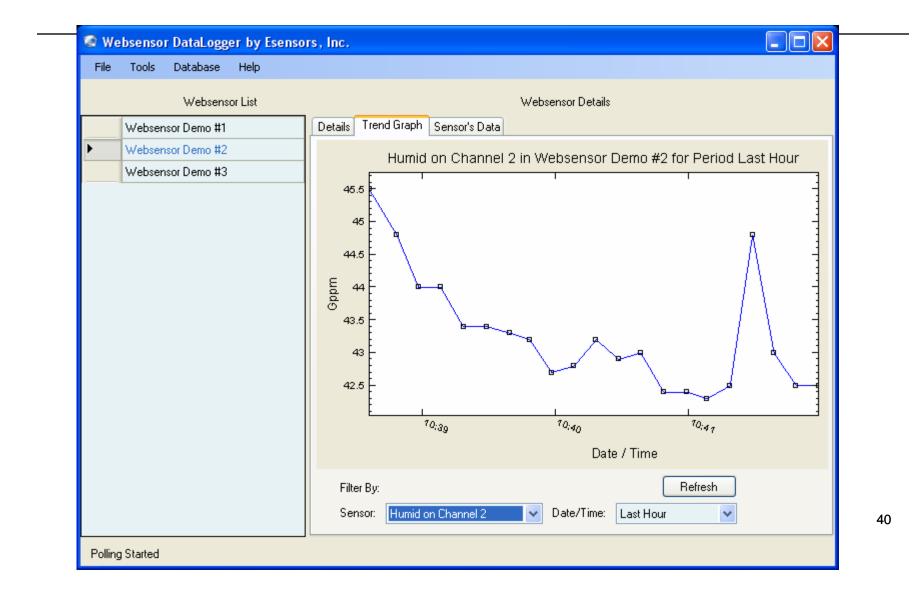
Dot 0 Commands for HVAC Sensor -- TEDS Related

- TIM Discovery (to see which TIMs are available): <u>http://192.168.254.99:80/1451/TIMDiscovery?responseFormat=text</u> Response: 0,1
- TransducerDiscovery
 <u>http://192.168.254.99:80/1451/TransducerDiscovery?timId=1&respo</u>
 <u>nseFormat=text</u>
 Returns: 0,1,1,2,3,TEMP,HUM,ILLUM
- □ Read TEDS (read individually)
- □ other

Website Graphical Display for Dot 0 Data

□ ReadTransducerData

http://192.168.254.99:80/1451/ReadData?timId=1&channelId=1 &sec=6&nsec=6&samplingMode=5&responseFormat=text Returns: 0,1,1,TEMP,25.99,C


□ ReadMetaIDTEDS

http://192.168.254.99:80/1451/ReadTeds?timId=1&channelId=0 &sec=1&nsec=1&tedsType=2&responseFormat=text Returns: 0,1,0,2,24:75:32:10:FA:CC, Esensors Inc, Websensor

Graphical Readout of HVAC Monitor

Address 🙋 💼		
Google -	🔽 💏 Search Web 🔹 👘 📲 AutoFill 📗 🚾 Options 🥒	
Server R	Room 1 HVAC	
Server Room 1 T	emperature Average	
84.0		
63.0		
କ୍ରି 42.0 -		
21.0		
0.0		
the second second	5 8 10 12 14 16 18 20 22 0 2 4 6 8 10	
Server Room 1 Il	lumination Average	
680.0	ta et ega 🖕	
510.0		
6 510.0 ci 340.0 iiii 170.0		
₫ 170.0		
0.0 4 6	5 8 10 12 14 16 18 20 22 0 2 4 6 8 10	
Server Room 1 H		
32.0 T	anniarty Arti age	
16.0		
H 8.0		
4 6	8 10 12 14 16 18 20 22 0 2 4 6 8 10	

Another Readout Example

Applications for HVAC

□ Monitor environmental conditions

Standard: temperature, humidity, illumination Gases: CO2, CO, VOC

- □ Monitor electrical usage and status
- □ Control motors, dampers, valves
- □ Local and Internet via standard formats

Summary

- Described the IEEE 1451 smart transducer standard
- Discussed applications of the standard to HVAC monitoring

Contact: designer@eesensors.com

IEEE 1451 for HVAC

End

Backup Slides Follow

www.eesensors.com

IE EEEE 1127 EAESS tassed accord HD Veda Colipartidon

Harmonization Meeting Summary (Held at NIST four times a year)

- □ 25 attendees, mostly government
- DOD, DHS, DJ, DS represented (also NASA subcontractor)
- □ All working under directives to implement standards
- □ DHS new directive requires new sensors to use existing open standards if available (not proprietary or invent new)
- DOD joint task group working on standards and expects to support test bed. Possible FY'10 requirement.
- Several test beds involving IEEE 1451 started (Esensors has some part in all).

IEEE 1451 as a Universal Digital Sensor Base Format

Specialized networks can handle only a limited number of sensor types or uses non-compact format

-1451 is much superior at the sensor end

- Most applications require individualized displays or graphical user interfaces – 1451 is a fixed format and poorly suited at the user end
- Network oriented applications prefer XML or similar formats which are convenient, but are too verbose at the sensor end
- 1451 at the sensor end (Sensor Fusion level 0) combined with translators is the best solution.

Future Prospects for IEEE 1451

- There has been little interest in previous parts of IEEE 1451 (Dots 2, 1 & 3), except for Dot 4 in certain areas.
- □ The basic Dot 0 (and Dot 5) are more carefully composed and thus likely to be accepted.
- □ The compiler may answer the complexity issue but still implementation of any full-featured standard will be difficult.
- □ The US government may mandate a sensor data standard and the NIST-supported IEEE 1451 is the most recognized candidate.
- The sensor industry, especially the wireless network sector, must recognize the business advantages of a single sensor data standard.

Wireless sensors – significant power available

- □ Line-powered or laptop sized battery
- □ Uses transceiver
- Depular choice: WiFi (IEEE 802.11b), 2.4 GHz

Components widely available (moderate cost) Good bandwidth

□ Variation of TCP/IP protocol, mostly non-standard

Wireless sensors – medium low power

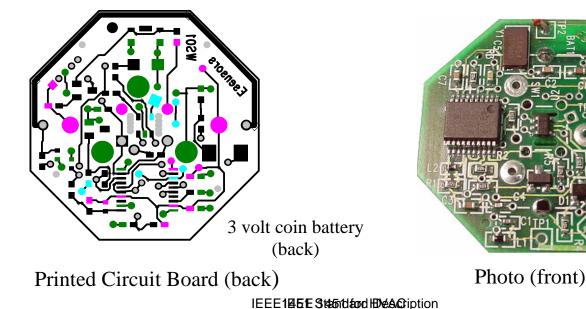
- □ Re-chargeable battery
- □ Uses transceiver
- □ Popular choices: Bluetooth (IEEE 802.15.1)

Low cost components (production scale) Hard to interface to sensors on prototype scale

- Moderate bandwidth
- □ Zigbee (IEEE 802.11.5)
 - Low bandwidth Intermittent communication (sleep mode) Star or Mesh

Wireless sensors – Very low power

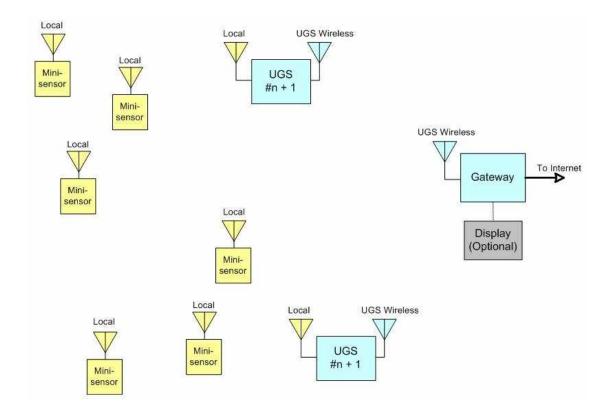
- □ Coin size battery, non-rechargeable, lifetime of years
- □ Transmit only
- D Popular choice: TI/Chipcon (433 MHz and 2.4 GHz)


RF modules and microcontrollers available

Low bandwidth

Intermittent transmission (sleep mode)

Wireless Sensor Example (low cost, long life, short messages)


- □ WS01 wireless temperature (and other) sensors
- □ 433 MHz FSK range 10 to 100 meters, transmit only
- □ SNAP data protocol (header, data, crc)—8 to 12 bytes
- Dot 4 TEDS send periodically

Zigbee Mesh Network System

 One of many sensor networks available.

IEEE124512 States d and HDeAC iption

TEDS Compiler

tight ----

CHAN

- 64

Part of Ph. D. thesis of
 Wai Liu
 (Univ. at Buffalo)

Ares	CHANNEL	TEDS
	Change Delault Value as Desired	
	Channel	1
	Sensor Type	Temperatura Senzi 💌
	Units	Celsius
	Zero/Mininum Value	0.0
A Ballin IV has been story from	Full Scale Value	100.0
IEEE 1451 TE	OError/Uncertainty	0.1
1 ACCESSION TO THE REAL	Chose Data Format	
IETA TEDS	🗇 Integer 🔗 Floating Poin	A © Other
ETA ID TEDS	Features:	
JCALIERATION TEDS	Self-Test/Multi-Range	NO -
WINEL ID TEOR		
RATION ID TEDS	Sampling/Butter	NO 📩
or NAME TEDS	Not Default Timing	ND 🔹
	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
2 4	NEXT	9

TIM Tester – Data retrieval

106/01			
	University at Buffale The State University of New York		
	IEEE 1451 TIM Tester V.1.0 Query Channel TEDS Analysis: Result: Supported		
	Sensor Type: Temperature Sensor SI Unit: K Lo w Limit Value: 233		
	High Limit Value: 353 Query Calibration TEDS Analysis: Result: Supported		
	Slope Constant Value: 1 Intercept Constant Value: 273.15 Sensor Data Value: 26.36719		
	Calibrated Sensor Value (In SI Unit): 299.5172		
	Start Test	st	
——	COPYRIGHT@2006 Darold Wobschall, University at B All rights reserved		53

IEEE 451 TIM Compliance Tester

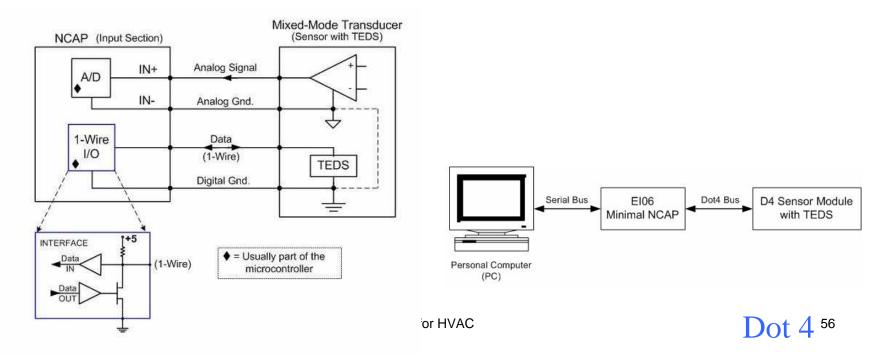
TIM (Transducer Interface Module) is most complex and done by sensor design engineers

(TIM tester can be used by the few NCAP designers)

- Tester verifies compliance of a TIM to IEEE 1451.0
 (Dot 0) protocol
- □ Focus is on TEDS checking and data transfer format
- Physical device compliance not checked (part of other standards, e.g. RS485, Bluetooth)
- □ Tester uses serial bus (RS232)
- □ Testing may be done by Internet

Transducer Electronic Data Sheet Dot 4 TEDS -- TEDS only

- UUID (Universal Unique Identifier)
 Supplied by EEPROM (DS2433) manufacturer (6 bytes)
- □ Basic TEDS (8 bytes)
 - □ Model Number (15 bits)
 - □ Version Letter (5 bits, A-Z)
 - Version Number (6 bits)
 - □ Manufacturer ID (14 bits)
 - □ Serial Number (6 bits)
- □ IEEE Template or Manufacturer's TEDS


Sensor type and calibration parameters (32 bytes)

Conversion to Dot 0 TEDS possible (but not unique) IEEE 1451 for HVAC

55

Alternative Tester for Dot 4 TEDS

IEEE 1451.4 (only) does not use the Dot 0 format TEDS. This is a small, TEDS-only version (no digital data format is specified by the standard).

Dot 4 TEDS Writer and Reader (PC Screens)

Esensors Inc IEEE 1451.4 Minimal NCAP Module TEDS WRITER	Esensors Inc IEEE 1451.4 Minimal NCAP Module TEDS READER	
Serial Number [24 BITS] Version Number [6 BITS] Version Letter [5 BITS] Model Number [15 BITS] Manufacturer ID [14 BITS] Traditionationationationationationation [111000 [00010 [110001001100110 [00010011001100110 MSB AA AA E1 59 99 CC CC	Family Code Unique Serial Code CRC 14 22D534010000 B6 BASIC TEDS: SERIAL NO101 VERSION NUMBER1 VERSION LETTERE MODEL NO6 MANUFACTURER ID34	
STATUS: 2:15:50 PM Reset Passed Verified Passed ProgrammedPassed TEDS OK failed	STATUS::4 2:51:12 PM RESETPassed TEDS READPassed CRC TESTPassed	
CONVERT VERIFY PROGRAM RESET BACK	READ RESET BACK	
Writer IEEE 1451 fo	or HVAC Reader 57	